NO 177.494 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be disproven:



HASKELL
  ↳ BR

mainModule Main
  ((enumFromThenTo :: Char  ->  Char  ->  Char  ->  [Char]) :: Char  ->  Char  ->  Char  ->  [Char])

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((enumFromThenTo :: Char  ->  Char  ->  Char  ->  [Char]) :: Char  ->  Char  ->  Char  ->  [Char])

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False

The following Function with conditions
p 
 | n' >= n
 = flip (<=) m
 | otherwise
 = flip (>=) m

is transformed to
p  = p2

p0 True = flip (>=) m

p1 True = flip (<=) m
p1 False = p0 otherwise

p2  = p1 (n' >= n)

The following Function with conditions
takeWhile p [] = []
takeWhile p (x : xs)
 | p x
 = x : takeWhile p xs
 | otherwise
 = []

is transformed to
takeWhile p [] = takeWhile3 p []
takeWhile p (x : xs) = takeWhile2 p (x : xs)

takeWhile0 p x xs True = []

takeWhile1 p x xs True = x : takeWhile p xs
takeWhile1 p x xs False = takeWhile0 p x xs otherwise

takeWhile2 p (x : xs) = takeWhile1 p x xs (p x)

takeWhile3 p [] = []
takeWhile3 vz wu = takeWhile2 vz wu



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ LetRed

mainModule Main
  ((enumFromThenTo :: Char  ->  Char  ->  Char  ->  [Char]) :: Char  ->  Char  ->  Char  ->  [Char])

module Main where
  import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
takeWhile p (numericEnumFromThen n n')
where 
p  = p2
p0 True = flip (>=) m
p1 True = flip (<=) m
p1 False = p0 otherwise
p2  = p1 (n' >= n)

are unpacked to the following functions on top level
numericEnumFromThenToP1 wv ww wx True = flip (<=) wv
numericEnumFromThenToP1 wv ww wx False = numericEnumFromThenToP0 wv ww wx otherwise

numericEnumFromThenToP0 wv ww wx True = flip (>=) wv

numericEnumFromThenToP2 wv ww wx = numericEnumFromThenToP1 wv ww wx (ww >= wx)

numericEnumFromThenToP wv ww wx = numericEnumFromThenToP2 wv ww wx



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
HASKELL
              ↳ Narrow
              ↳ Narrow

mainModule Main
  (enumFromThenTo :: Char  ->  Char  ->  Char  ->  [Char])

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(wy1050), Succ(wy1040)) → new_primPlusNat(wy1050, wy1040)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ NonTerminationProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_mapnew_map

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_mapnew_map

The TRS R consists of the following rules:none


s = new_map evaluates to t =new_map

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_map to new_map.





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map2(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(wy187, wy198, wy199, Succ(wy2000), ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map2(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(wy187, wy198, wy199, Succ(wy2000), ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map2(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba) at position [3] we obtained the following new rules:

new_map2(y0, y1, Succ(x0), y3) → new_map0(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map2(y0, y1, Zero, y3) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(wy187, wy198, wy199, Succ(wy2000), ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map2(y0, y1, Succ(x0), y3) → new_map0(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map2(y0, y1, Zero, y3) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3)
new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map2(y0, y1, Succ(x0), y3) → new_map0(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3) at position [1] we obtained the following new rules:

new_map2(y0, y1, Succ(x0), y3) → new_map0(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map2(y0, y1, Succ(x0), y3) → new_map0(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map0(wy187, wy198, wy199, Succ(wy2000), ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map2(y0, y1, Zero, y3) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3) at position [1] we obtained the following new rules:

new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map2(y0, y1, Succ(x0), y3) → new_map0(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map0(wy187, wy198, wy199, Succ(wy2000), ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y3)
new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map2(y0, y1, Succ(x0), y3) → new_map0(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3) at position [2] we obtained the following new rules:

new_map2(y0, y1, Succ(x0), y3) → new_map0(y0, Succ(x0), Succ(x0), Succ(x0), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(wy187, wy198, wy199, Succ(wy2000), ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y3)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map2(y0, y1, Succ(x0), y3) → new_map0(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y3) at position [2] we obtained the following new rules:

new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(wy187, wy198, wy199, Succ(wy2000), ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map2(y0, y1, Succ(x0), y3) → new_map0(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map0(wy187, wy198, wy199, Succ(wy2000), ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba) at position [3] we obtained the following new rules:

new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)
new_map0(y0, y1, Zero, Succ(y3), y4) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)
new_map0(y0, y1, Zero, Succ(y3), y4) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y4)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map2(y0, y1, Succ(x0), y3) → new_map0(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
QDP
                                                      ↳ UsableRulesProof
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
QDP
                                                          ↳ Rewriting
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4) at position [1] we obtained the following new rules:

new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ Rewriting
QDP
                                                              ↳ Rewriting
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4) at position [2] we obtained the following new rules:

new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, Succ(x0), Succ(x0), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Rewriting
QDP
                                                                  ↳ UsableRulesProof
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, Succ(x0), Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ UsableRulesProof
QDP
                                                                      ↳ QReductionProof
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, Succ(x0), Succ(x0), Succ(x0), y4)

R is empty.
The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ UsableRulesProof
                                                                    ↳ QDP
                                                                      ↳ QReductionProof
QDP
                                                                          ↳ Instantiation
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, Succ(x0), Succ(x0), Succ(x0), y4)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map0(y0, y1, Succ(x0), Succ(y3), y4) → new_map0(y0, Succ(x0), Succ(x0), Succ(x0), y4) we obtained the following new rules:

new_map0(z0, Succ(z2), Succ(z2), Succ(z2), z4) → new_map0(z0, Succ(z2), Succ(z2), Succ(z2), z4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ UsableRulesProof
                                                                    ↳ QDP
                                                                      ↳ QReductionProof
                                                                        ↳ QDP
                                                                          ↳ Instantiation
QDP
                                                                              ↳ NonTerminationProof
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(z0, Succ(z2), Succ(z2), Succ(z2), z4) → new_map0(z0, Succ(z2), Succ(z2), Succ(z2), z4)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_map0(z0, Succ(z2), Succ(z2), Succ(z2), z4) → new_map0(z0, Succ(z2), Succ(z2), Succ(z2), z4)

The TRS R consists of the following rules:none


s = new_map0(z0, Succ(z2), Succ(z2), Succ(z2), z4) evaluates to t =new_map0(z0, Succ(z2), Succ(z2), Succ(z2), z4)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_map0(z0, Succ(z2), Succ(z2), Succ(z2), z4) to new_map0(z0, Succ(z2), Succ(z2), Succ(z2), z4).





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
QDP
                                                      ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(y0, y1, Zero, Succ(y3), y4) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y4)
new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map0(y0, y1, Zero, Succ(y3), y4) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y4) at position [1] we obtained the following new rules:

new_map0(y0, y1, Zero, Succ(y3), y4) → new_map0(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
QDP
                                                          ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(y0, y1, Zero, Succ(y3), y4) → new_map0(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y4)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map0(y0, y1, Zero, Succ(y3), y4) → new_map0(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y4) at position [2] we obtained the following new rules:

new_map0(y0, y1, Zero, Succ(y3), y4) → new_map0(y0, Zero, Zero, Zero, y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
QDP
                                                              ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(y0, y1, Zero, Succ(y3), y4) → new_map0(y0, Zero, Zero, Zero, y4)
new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map1(wy187, wy198, wy199, ba) → new_map0(wy187, new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), new_primPlusNat0(Zero, wy199), ba) at position [3] we obtained the following new rules:

new_map1(y0, y1, Zero, y3) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3)
new_map1(y0, y1, Succ(x0), y3) → new_map0(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
QDP
                                                                  ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map1(y0, y1, Succ(x0), y3) → new_map0(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map1(y0, y1, Zero, y3) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map0(y0, y1, Zero, Succ(y3), y4) → new_map0(y0, Zero, Zero, Zero, y4)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
QDP
                                                                      ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map1(y0, y1, Zero, y3) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
QDP
                                                                          ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map1(y0, y1, Zero, y3) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map1(y0, y1, Zero, y3) → new_map0(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3) at position [1] we obtained the following new rules:

new_map1(y0, y1, Zero, y3) → new_map0(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
QDP
                                                                              ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map1(y0, y1, Zero, y3) → new_map0(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y3)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map1(y0, y1, Zero, y3) → new_map0(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y3) at position [2] we obtained the following new rules:

new_map1(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ Rewriting
QDP
                                                                                  ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map1(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ UsableRulesProof
QDP
                                                                                      ↳ QReductionProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map1(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

R is empty.
The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ UsableRulesProof
                                                                                    ↳ QDP
                                                                                      ↳ QReductionProof
QDP
                                                                                          ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map1(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map0(Succ(wy1870), wy198, wy199, Zero, ba) → new_map1(Succ(wy1870), wy198, wy199, ba) we obtained the following new rules:

new_map0(Succ(x0), Zero, Zero, Zero, z2) → new_map1(Succ(x0), Zero, Zero, z2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ UsableRulesProof
                                                                                    ↳ QDP
                                                                                      ↳ QReductionProof
                                                                                        ↳ QDP
                                                                                          ↳ Instantiation
QDP
                                                                                              ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(Succ(x0), Zero, Zero, Zero, z2) → new_map1(Succ(x0), Zero, Zero, z2)
new_map1(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map1(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3) we obtained the following new rules:

new_map1(Succ(z0), Zero, Zero, z1) → new_map0(Succ(z0), Zero, Zero, Zero, z1)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ UsableRulesProof
                                                                                    ↳ QDP
                                                                                      ↳ QReductionProof
                                                                                        ↳ QDP
                                                                                          ↳ Instantiation
                                                                                            ↳ QDP
                                                                                              ↳ Instantiation
QDP
                                                                                                  ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(Succ(x0), Zero, Zero, Zero, z2) → new_map1(Succ(x0), Zero, Zero, z2)
new_map1(Succ(z0), Zero, Zero, z1) → new_map0(Succ(z0), Zero, Zero, Zero, z1)
new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ UsableRulesProof
                                                                                    ↳ QDP
                                                                                      ↳ QReductionProof
                                                                                        ↳ QDP
                                                                                          ↳ Instantiation
                                                                                            ↳ QDP
                                                                                              ↳ Instantiation
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ AND
QDP
                                                                                                        ↳ NonTerminationProof
                                                                                                      ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(Succ(x0), Zero, Zero, Zero, z2) → new_map1(Succ(x0), Zero, Zero, z2)
new_map1(Succ(z0), Zero, Zero, z1) → new_map0(Succ(z0), Zero, Zero, Zero, z1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

new_map0(Succ(x0), Zero, Zero, Zero, z2) → new_map1(Succ(x0), Zero, Zero, z2)
new_map1(Succ(z0), Zero, Zero, z1) → new_map0(Succ(z0), Zero, Zero, Zero, z1)

The TRS R consists of the following rules:none


s = new_map1(Succ(z0), Zero, Zero, z1) evaluates to t =new_map1(Succ(z0), Zero, Zero, z1)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

new_map1(Succ(z0), Zero, Zero, z1)new_map0(Succ(z0), Zero, Zero, Zero, z1)
with rule new_map1(Succ(z0'), Zero, Zero, z1') → new_map0(Succ(z0'), Zero, Zero, Zero, z1') at position [] and matcher [z1' / z1, z0' / z0]

new_map0(Succ(z0), Zero, Zero, Zero, z1)new_map1(Succ(z0), Zero, Zero, z1)
with rule new_map0(Succ(x0), Zero, Zero, Zero, z2) → new_map1(Succ(x0), Zero, Zero, z2)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ UsableRulesProof
                                                                                    ↳ QDP
                                                                                      ↳ QReductionProof
                                                                                        ↳ QDP
                                                                                          ↳ Instantiation
                                                                                            ↳ QDP
                                                                                              ↳ Instantiation
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ AND
                                                                                                      ↳ QDP
QDP
                                                                                                        ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map0(Zero, wy198, wy199, Zero, ba) → new_map2(Zero, wy198, wy199, ba) we obtained the following new rules:

new_map0(Zero, Zero, Zero, Zero, z2) → new_map2(Zero, Zero, Zero, z2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ UsableRulesProof
                                                                                    ↳ QDP
                                                                                      ↳ QReductionProof
                                                                                        ↳ QDP
                                                                                          ↳ Instantiation
                                                                                            ↳ QDP
                                                                                              ↳ Instantiation
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ AND
                                                                                                      ↳ QDP
                                                                                                      ↳ QDP
                                                                                                        ↳ Instantiation
QDP
                                                                                                            ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3)
new_map0(Zero, Zero, Zero, Zero, z2) → new_map2(Zero, Zero, Zero, z2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map2(y0, y1, Zero, y3) → new_map0(y0, Zero, Zero, Zero, y3) we obtained the following new rules:

new_map2(Zero, Zero, Zero, z0) → new_map0(Zero, Zero, Zero, Zero, z0)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ Rewriting
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ UsableRulesProof
                                                                                    ↳ QDP
                                                                                      ↳ QReductionProof
                                                                                        ↳ QDP
                                                                                          ↳ Instantiation
                                                                                            ↳ QDP
                                                                                              ↳ Instantiation
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ AND
                                                                                                      ↳ QDP
                                                                                                      ↳ QDP
                                                                                                        ↳ Instantiation
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
QDP
                                                                                                                ↳ NonTerminationProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map2(Zero, Zero, Zero, z0) → new_map0(Zero, Zero, Zero, Zero, z0)
new_map0(Zero, Zero, Zero, Zero, z2) → new_map2(Zero, Zero, Zero, z2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

new_map2(Zero, Zero, Zero, z0) → new_map0(Zero, Zero, Zero, Zero, z0)
new_map0(Zero, Zero, Zero, Zero, z2) → new_map2(Zero, Zero, Zero, z2)

The TRS R consists of the following rules:none


s = new_map0(Zero, Zero, Zero, Zero, z2) evaluates to t =new_map0(Zero, Zero, Zero, Zero, z2)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

new_map0(Zero, Zero, Zero, Zero, z2)new_map2(Zero, Zero, Zero, z2)
with rule new_map0(Zero, Zero, Zero, Zero, z2') → new_map2(Zero, Zero, Zero, z2') at position [] and matcher [z2' / z2]

new_map2(Zero, Zero, Zero, z2)new_map0(Zero, Zero, Zero, Zero, z2)
with rule new_map2(Zero, Zero, Zero, z0) → new_map0(Zero, Zero, Zero, Zero, z0)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map5(wy443, wy444, wy445, wy446, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba)
new_map3(wy443, wy450, wy445, wy451, Zero, ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Zero, ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Zero, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map3(wy443, wy450, wy445, wy451, Zero, ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Zero, ba)
The remaining pairs can at least be oriented weakly.

new_map5(wy443, wy444, wy445, wy446, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Zero, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 0   
POL(Zero) = 1   
POL(new_map3(x1, x2, x3, x4, x5, x6)) = x5   
POL(new_map4(x1, x2, x3, x4, x5, x6, x7)) = 0   
POL(new_map5(x1, x2, x3, x4, x5)) = 0   
POL(new_primPlusNat0(x1, x2)) = x1   

The following usable rules [17] were oriented:

new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map5(wy443, wy444, wy445, wy446, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Zero, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map5(wy443, wy444, wy445, wy446, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba) at position [4] we obtained the following new rules:

new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Zero, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4) at position [1] we obtained the following new rules:

new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Zero, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4) at position [1] we obtained the following new rules:

new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Zero, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4) at position [3] we obtained the following new rules:

new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Zero, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4) at position [3] we obtained the following new rules:

new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Zero, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Zero, ba) → new_map3(wy443, new_primPlusNat0(Succ(wy445), wy446), wy445, new_primPlusNat0(Succ(wy445), wy446), new_primPlusNat0(Succ(wy445), wy446), ba) at position [4] we obtained the following new rules:

new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5) at position [1] we obtained the following new rules:

new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5) at position [1] we obtained the following new rules:

new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
QDP
                                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5) at position [3] we obtained the following new rules:

new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5) at position [3] we obtained the following new rules:

new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
QDP
                                                                ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map3(wy443, wy450, wy445, wy451, Succ(wy4520), ba) → new_map4(wy443, wy450, wy445, wy451, Succ(wy443), Succ(wy4520), ba) we obtained the following new rules:

new_map3(z0, Succ(z2), z2, Succ(z2), Succ(z2), z3) → new_map4(z0, Succ(z2), z2, Succ(z2), Succ(z0), Succ(z2), z3)
new_map3(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map4(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(z0), Succ(Succ(y_2)), z4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
QDP
                                                                    ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map3(z0, Succ(z2), z2, Succ(z2), Succ(z2), z3) → new_map4(z0, Succ(z2), z2, Succ(z2), Succ(z0), Succ(z2), z3)
new_map3(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map4(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(z0), Succ(Succ(y_2)), z4)
new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map4(wy443, wy444, wy445, wy446, Zero, Zero, ba) → new_map5(wy443, wy444, wy445, wy446, ba) we obtained the following new rules:

new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map4(x0, x1, x2, Zero, Zero, Zero, x4) → new_map5(x0, x1, x2, Zero, x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
QDP
                                                                        ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map3(z0, Succ(z2), z2, Succ(z2), Succ(z2), z3) → new_map4(z0, Succ(z2), z2, Succ(z2), Succ(z0), Succ(z2), z3)
new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map3(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map4(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(z0), Succ(Succ(y_2)), z4)
new_map4(x0, x1, x2, Zero, Zero, Zero, x4) → new_map5(x0, x1, x2, Zero, x4)
new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map4(wy443, wy444, wy445, wy446, Succ(wy4470), Succ(wy4480), ba) → new_map4(wy443, wy444, wy445, wy446, wy4470, wy4480, ba) we obtained the following new rules:

new_map4(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map4(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Zero, Zero, x6)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
QDP
                                                                            ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map3(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map4(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(z0), Succ(Succ(y_2)), z4)
new_map4(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Zero, Zero, x6)
new_map4(x0, x1, x2, Zero, Zero, Zero, x4) → new_map5(x0, x1, x2, Zero, x4)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map3(z0, Succ(z2), z2, Succ(z2), Succ(z2), z3) → new_map4(z0, Succ(z2), z2, Succ(z2), Succ(z0), Succ(z2), z3)
new_map4(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map3(z0, Succ(z2), z2, Succ(z2), Succ(z2), z3) → new_map4(z0, Succ(z2), z2, Succ(z2), Succ(z0), Succ(z2), z3) we obtained the following new rules:

new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map3(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Succ(y_4)), Succ(Zero), x2)
new_map3(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_5)), x2) → new_map4(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
QDP
                                                                                ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map3(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map4(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(z0), Succ(Succ(y_2)), z4)
new_map4(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Zero, Zero, x6)
new_map4(x0, x1, x2, Zero, Zero, Zero, x4) → new_map5(x0, x1, x2, Zero, x4)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map3(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_5)), x2) → new_map4(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map3(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Succ(y_4)), Succ(Zero), x2)
new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map5(y0, y1, x0, Zero, y4) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4) we obtained the following new rules:

new_map5(x0, x1, Succ(y_1), Zero, x3) → new_map3(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map5(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map5(Zero, x1, Zero, Zero, x3) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map5(Succ(y_0), x1, Zero, Zero, x3) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
QDP
                                                                                    ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map5(x0, x1, Succ(y_1), Zero, x3) → new_map3(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map5(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map3(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map4(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(z0), Succ(Succ(y_2)), z4)
new_map4(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Zero, Zero, x6)
new_map4(x0, x1, x2, Zero, Zero, Zero, x4) → new_map5(x0, x1, x2, Zero, x4)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map5(Succ(y_0), x1, Zero, Zero, x3) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map3(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_5)), x2) → new_map4(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map5(Zero, x1, Zero, Zero, x3) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map3(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Succ(y_4)), Succ(Zero), x2)
new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map4(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map3(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5) we obtained the following new rules:

new_map4(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map4(x0, x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map3(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map4(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map4(Succ(y_0), x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
QDP
                                                                                        ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map5(x0, x1, Succ(y_1), Zero, x3) → new_map3(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map5(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map4(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map3(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map4(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(z0), Succ(Succ(y_2)), z4)
new_map4(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Zero, Zero, x6)
new_map4(x0, x1, x2, Zero, Zero, Zero, x4) → new_map5(x0, x1, x2, Zero, x4)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map5(Succ(y_0), x1, Zero, Zero, x3) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map4(Succ(y_0), x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map3(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_5)), x2) → new_map4(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map3(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Succ(y_4)), Succ(Zero), x2)
new_map5(Zero, x1, Zero, Zero, x3) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map4(x0, x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map3(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map4(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map3(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map4(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(z0), Succ(Succ(y_2)), z4) we obtained the following new rules:

new_map3(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map4(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(y_4)), Succ(Succ(x4)), x5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
QDP
                                                                                            ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map5(x0, x1, Succ(y_1), Zero, x3) → new_map3(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map5(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map4(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map4(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Zero, Zero, x6)
new_map4(x0, x1, x2, Zero, Zero, Zero, x4) → new_map5(x0, x1, x2, Zero, x4)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map5(Succ(y_0), x1, Zero, Zero, x3) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map4(Succ(y_0), x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map3(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_5)), x2) → new_map4(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map5(Zero, x1, Zero, Zero, x3) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map3(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Succ(y_4)), Succ(Zero), x2)
new_map4(x0, x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map3(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map4(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map3(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map4(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(y_4)), Succ(Succ(x4)), x5)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map5(x0, x1, Succ(y_1), Zero, x3) → new_map3(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3) we obtained the following new rules:

new_map5(Succ(y_0), x1, Succ(x2), Zero, x3) → new_map3(Succ(y_0), Succ(Succ(x2)), Succ(x2), Succ(Succ(x2)), Succ(Succ(x2)), x3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
QDP
                                                                                                ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map5(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map4(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map4(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Zero, Zero, x6)
new_map4(x0, x1, x2, Zero, Zero, Zero, x4) → new_map5(x0, x1, x2, Zero, x4)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map5(Succ(y_0), x1, Zero, Zero, x3) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map4(Succ(y_0), x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map3(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_5)), x2) → new_map4(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map3(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Succ(y_4)), Succ(Zero), x2)
new_map5(Zero, x1, Zero, Zero, x3) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map4(x0, x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map3(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map4(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map3(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map4(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(y_4)), Succ(Succ(x4)), x5)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map4(x0, x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map3(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4) we obtained the following new rules:

new_map4(Succ(y_0), x1, Succ(x2), Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Succ(x2)), Succ(x2), Succ(Succ(x2)), Succ(Succ(x2)), x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
QDP
                                                                                                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map5(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map4(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map4(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Zero, Zero, x6)
new_map4(x0, x1, x2, Zero, Zero, Zero, x4) → new_map5(x0, x1, x2, Zero, x4)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map5(Succ(y_0), x1, Zero, Zero, x3) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map4(Succ(y_0), x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map3(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_5)), x2) → new_map4(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map5(Zero, x1, Zero, Zero, x3) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map3(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Succ(y_4)), Succ(Zero), x2)
new_map4(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map3(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map4(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(y_4)), Succ(Succ(x4)), x5)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map4(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map4(x0, x1, x2, Zero, Zero, Zero, x4) → new_map5(x0, x1, x2, Zero, x4)
new_map4(Succ(y_0), x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map4(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
The remaining pairs can at least be oriented weakly.

new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map5(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map4(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Zero, Zero, x6)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map5(Succ(y_0), x1, Zero, Zero, x3) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map3(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_5)), x2) → new_map4(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map5(Zero, x1, Zero, Zero, x3) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map3(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Succ(y_4)), Succ(Zero), x2)
new_map3(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map4(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(y_4)), Succ(Succ(x4)), x5)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 0   
POL(Zero) = 1   
POL(new_map3(x1, x2, x3, x4, x5, x6)) = 0   
POL(new_map4(x1, x2, x3, x4, x5, x6, x7)) = x4   
POL(new_map5(x1, x2, x3, x4, x5)) = 0   
POL(new_primPlusNat0(x1, x2)) = 0   

The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
QDP
                                                                                                        ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map5(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map3(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map4(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Zero, Zero, x6)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map5(Succ(y_0), x1, Zero, Zero, x3) → new_map3(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map3(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_5)), x2) → new_map4(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map4(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map4(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map5(Zero, x1, Zero, Zero, x3) → new_map3(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map3(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map4(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Succ(y_4)), Succ(Zero), x2)
new_map3(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map4(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(y_4)), Succ(Succ(x4)), x5)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 7 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
QDP
                                                                                                            ↳ MNOCProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map3(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map4(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(y_4)), Succ(Succ(x4)), x5)
new_map3(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_5)), x2) → new_map4(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ MNOCProof
QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map5(x0, x1, x2, Succ(y_3), x4)
new_map4(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map4(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map4(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map4(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map4(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map3(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map4(Succ(y_4), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(y_4)), Succ(Succ(x4)), x5)
new_map3(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_5)), x2) → new_map4(Succ(y_4), Succ(Succ(y_5)), Succ(y_5), Succ(Succ(y_5)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map5(y0, y1, x0, Succ(x1), y4) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map4(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map3(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

Q is empty.
We have to consider all (P,Q,R)-chains.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map6(wy187, wy195, wy1880, wy196, Succ(wy1970), ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba)
new_map7(wy187, wy195, wy1880, wy196, ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba)
new_map6(Zero, wy195, wy1880, wy196, Zero, ba) → new_map8(Zero, wy195, wy1880, wy196, ba)
new_map6(Succ(wy1870), wy195, wy1880, wy196, Zero, ba) → new_map7(Succ(wy1870), wy195, wy1880, wy196, ba)
new_map8(wy187, wy195, wy1880, wy196, ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map8(wy187, wy195, wy1880, wy196, ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba) we obtained the following new rules:

new_map8(Zero, z0, z1, z2, z3) → new_map6(Zero, new_primPlusNat0(Succ(z1), z2), z1, new_primPlusNat0(Succ(z1), z2), new_primPlusNat0(Succ(z1), z2), z3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ Instantiation
QDP
                        ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map7(wy187, wy195, wy1880, wy196, ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba)
new_map6(wy187, wy195, wy1880, wy196, Succ(wy1970), ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba)
new_map6(Zero, wy195, wy1880, wy196, Zero, ba) → new_map8(Zero, wy195, wy1880, wy196, ba)
new_map8(Zero, z0, z1, z2, z3) → new_map6(Zero, new_primPlusNat0(Succ(z1), z2), z1, new_primPlusNat0(Succ(z1), z2), new_primPlusNat0(Succ(z1), z2), z3)
new_map6(Succ(wy1870), wy195, wy1880, wy196, Zero, ba) → new_map7(Succ(wy1870), wy195, wy1880, wy196, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map6(Zero, wy195, wy1880, wy196, Zero, ba) → new_map8(Zero, wy195, wy1880, wy196, ba)
new_map6(Succ(wy1870), wy195, wy1880, wy196, Zero, ba) → new_map7(Succ(wy1870), wy195, wy1880, wy196, ba)
The remaining pairs can at least be oriented weakly.

new_map7(wy187, wy195, wy1880, wy196, ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba)
new_map6(wy187, wy195, wy1880, wy196, Succ(wy1970), ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba)
new_map8(Zero, z0, z1, z2, z3) → new_map6(Zero, new_primPlusNat0(Succ(z1), z2), z1, new_primPlusNat0(Succ(z1), z2), new_primPlusNat0(Succ(z1), z2), z3)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 0   
POL(Zero) = 1   
POL(new_map6(x1, x2, x3, x4, x5, x6)) = x1 + x5   
POL(new_map7(x1, x2, x3, x4, x5)) = x1   
POL(new_map8(x1, x2, x3, x4, x5)) = x1   
POL(new_primPlusNat0(x1, x2)) = 0   

The following usable rules [17] were oriented:

new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ Instantiation
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map6(wy187, wy195, wy1880, wy196, Succ(wy1970), ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba)
new_map7(wy187, wy195, wy1880, wy196, ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba)
new_map8(Zero, z0, z1, z2, z3) → new_map6(Zero, new_primPlusNat0(Succ(z1), z2), z1, new_primPlusNat0(Succ(z1), z2), new_primPlusNat0(Succ(z1), z2), z3)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ Instantiation
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map6(wy187, wy195, wy1880, wy196, Succ(wy1970), ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map6(wy187, wy195, wy1880, wy196, Succ(wy1970), ba) → new_map6(wy187, new_primPlusNat0(Succ(wy1880), wy196), wy1880, new_primPlusNat0(Succ(wy1880), wy196), new_primPlusNat0(Succ(wy1880), wy196), ba) at position [4] we obtained the following new rules:

new_map6(y0, y1, x0, Zero, Succ(y4), y5) → new_map6(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ Instantiation
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
QDP
                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map6(y0, y1, x0, Zero, Succ(y4), y5) → new_map6(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map6(y0, y1, x0, Zero, Succ(y4), y5) → new_map6(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5) at position [1] we obtained the following new rules:

new_map6(y0, y1, x0, Zero, Succ(y4), y5) → new_map6(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ Instantiation
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map6(y0, y1, x0, Zero, Succ(y4), y5) → new_map6(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5) at position [1] we obtained the following new rules:

new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ Instantiation
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map6(y0, y1, x0, Zero, Succ(y4), y5) → new_map6(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map6(y0, y1, x0, Zero, Succ(y4), y5) → new_map6(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5) at position [3] we obtained the following new rules:

new_map6(y0, y1, x0, Zero, Succ(y4), y5) → new_map6(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ Instantiation
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
QDP
                                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map6(y0, y1, x0, Zero, Succ(y4), y5) → new_map6(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5) at position [3] we obtained the following new rules:

new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ Instantiation
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map6(y0, y1, x0, Zero, Succ(y4), y5) → new_map6(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ Instantiation
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
QDP
                                                        ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map6(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map6(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5) we obtained the following new rules:

new_map6(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map6(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ Instantiation
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Instantiation
QDP
                                                            ↳ MNOCProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map6(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map6(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ Instantiation
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Instantiation
                                                          ↳ QDP
                                                            ↳ MNOCProof
QDP
                                                                ↳ NonTerminationProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map6(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map6(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_map6(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map6(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))


s = new_map6(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) evaluates to t =new_map6(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_map6(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) to new_map6(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5).





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map10(wy204, wy205, ba) → new_map9(new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), ba)
new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba)
new_map9(wy204, wy205, Zero, ba) → new_map9(new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map10(wy204, wy205, ba) → new_map9(new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), ba)
new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba)
new_map9(wy204, wy205, Zero, ba) → new_map9(new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map10(wy204, wy205, ba) → new_map9(new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), ba) at position [2] we obtained the following new rules:

new_map10(y0, Succ(x0), y2) → new_map9(new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y2)
new_map10(y0, Zero, y2) → new_map9(new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba)
new_map10(y0, Zero, y2) → new_map9(new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y2)
new_map10(y0, Succ(x0), y2) → new_map9(new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y2)
new_map9(wy204, wy205, Zero, ba) → new_map9(new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map10(y0, Succ(x0), y2) → new_map9(new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y2) at position [0] we obtained the following new rules:

new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba)
new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y2)
new_map9(wy204, wy205, Zero, ba) → new_map9(new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), ba)
new_map10(y0, Zero, y2) → new_map9(new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map10(y0, Zero, y2) → new_map9(new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y2) at position [0] we obtained the following new rules:

new_map10(y0, Zero, y2) → new_map9(Zero, new_primPlusNat0(Zero, Zero), Zero, y2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba)
new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y2)
new_map9(wy204, wy205, Zero, ba) → new_map9(new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), ba)
new_map10(y0, Zero, y2) → new_map9(Zero, new_primPlusNat0(Zero, Zero), Zero, y2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y2) at position [1] we obtained the following new rules:

new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), Succ(x0), Succ(x0), y2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba)
new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), Succ(x0), Succ(x0), y2)
new_map9(wy204, wy205, Zero, ba) → new_map9(new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), ba)
new_map10(y0, Zero, y2) → new_map9(Zero, new_primPlusNat0(Zero, Zero), Zero, y2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map10(y0, Zero, y2) → new_map9(Zero, new_primPlusNat0(Zero, Zero), Zero, y2) at position [1] we obtained the following new rules:

new_map10(y0, Zero, y2) → new_map9(Zero, Zero, Zero, y2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba)
new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), Succ(x0), Succ(x0), y2)
new_map9(wy204, wy205, Zero, ba) → new_map9(new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), ba)
new_map10(y0, Zero, y2) → new_map9(Zero, Zero, Zero, y2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map9(wy204, wy205, Zero, ba) → new_map9(new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), new_primPlusNat0(Zero, wy205), ba) at position [2] we obtained the following new rules:

new_map9(y0, Succ(x0), Zero, y2) → new_map9(new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y2)
new_map9(y0, Zero, Zero, y2) → new_map9(new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba)
new_map9(y0, Zero, Zero, y2) → new_map9(new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y2)
new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), Succ(x0), Succ(x0), y2)
new_map9(y0, Succ(x0), Zero, y2) → new_map9(new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y2)
new_map10(y0, Zero, y2) → new_map9(Zero, Zero, Zero, y2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 2 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
QDP
                                                      ↳ UsableRulesProof
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(y0, Zero, Zero, y2) → new_map9(new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
QDP
                                                          ↳ Rewriting
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(y0, Zero, Zero, y2) → new_map9(new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map9(y0, Zero, Zero, y2) → new_map9(new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y2) at position [0] we obtained the following new rules:

new_map9(y0, Zero, Zero, y2) → new_map9(Zero, new_primPlusNat0(Zero, Zero), Zero, y2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ Rewriting
QDP
                                                              ↳ Rewriting
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(y0, Zero, Zero, y2) → new_map9(Zero, new_primPlusNat0(Zero, Zero), Zero, y2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map9(y0, Zero, Zero, y2) → new_map9(Zero, new_primPlusNat0(Zero, Zero), Zero, y2) at position [1] we obtained the following new rules:

new_map9(y0, Zero, Zero, y2) → new_map9(Zero, Zero, Zero, y2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Rewriting
QDP
                                                                  ↳ UsableRulesProof
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(y0, Zero, Zero, y2) → new_map9(Zero, Zero, Zero, y2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ UsableRulesProof
QDP
                                                                      ↳ QReductionProof
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(y0, Zero, Zero, y2) → new_map9(Zero, Zero, Zero, y2)

R is empty.
The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ UsableRulesProof
                                                                    ↳ QDP
                                                                      ↳ QReductionProof
QDP
                                                                          ↳ Instantiation
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(y0, Zero, Zero, y2) → new_map9(Zero, Zero, Zero, y2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map9(y0, Zero, Zero, y2) → new_map9(Zero, Zero, Zero, y2) we obtained the following new rules:

new_map9(Zero, Zero, Zero, z1) → new_map9(Zero, Zero, Zero, z1)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ Rewriting
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ UsableRulesProof
                                                                    ↳ QDP
                                                                      ↳ QReductionProof
                                                                        ↳ QDP
                                                                          ↳ Instantiation
QDP
                                                                              ↳ NonTerminationProof
                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(Zero, Zero, Zero, z1) → new_map9(Zero, Zero, Zero, z1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_map9(Zero, Zero, Zero, z1) → new_map9(Zero, Zero, Zero, z1)

The TRS R consists of the following rules:none


s = new_map9(Zero, Zero, Zero, z1) evaluates to t =new_map9(Zero, Zero, Zero, z1)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_map9(Zero, Zero, Zero, z1) to new_map9(Zero, Zero, Zero, z1).





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
QDP
                                                      ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba)
new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), Succ(x0), Succ(x0), y2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
QDP
                                                          ↳ QReductionProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba)
new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), Succ(x0), Succ(x0), y2)

R is empty.
The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ QReductionProof
QDP
                                                              ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba)
new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), Succ(x0), Succ(x0), y2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map9(wy204, wy205, Succ(wy2060), ba) → new_map10(wy204, wy205, ba) we obtained the following new rules:

new_map9(Succ(z1), Succ(z1), Succ(z1), z2) → new_map10(Succ(z1), Succ(z1), z2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ QReductionProof
                                                            ↳ QDP
                                                              ↳ Instantiation
QDP
                                                                  ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), Succ(x0), Succ(x0), y2)
new_map9(Succ(z1), Succ(z1), Succ(z1), z2) → new_map10(Succ(z1), Succ(z1), z2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map10(y0, Succ(x0), y2) → new_map9(Succ(x0), Succ(x0), Succ(x0), y2) we obtained the following new rules:

new_map10(Succ(z0), Succ(z0), z1) → new_map9(Succ(z0), Succ(z0), Succ(z0), z1)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ AND
                                                    ↳ QDP
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ QReductionProof
                                                            ↳ QDP
                                                              ↳ Instantiation
                                                                ↳ QDP
                                                                  ↳ Instantiation
QDP
                                                                      ↳ NonTerminationProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map10(Succ(z0), Succ(z0), z1) → new_map9(Succ(z0), Succ(z0), Succ(z0), z1)
new_map9(Succ(z1), Succ(z1), Succ(z1), z2) → new_map10(Succ(z1), Succ(z1), z2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

new_map10(Succ(z0), Succ(z0), z1) → new_map9(Succ(z0), Succ(z0), Succ(z0), z1)
new_map9(Succ(z1), Succ(z1), Succ(z1), z2) → new_map10(Succ(z1), Succ(z1), z2)

The TRS R consists of the following rules:none


s = new_map9(Succ(z1'), Succ(z1'), Succ(z1'), z2) evaluates to t =new_map9(Succ(z1'), Succ(z1'), Succ(z1'), z2)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

new_map9(Succ(z1'), Succ(z1'), Succ(z1'), z2)new_map10(Succ(z1'), Succ(z1'), z2)
with rule new_map9(Succ(z1''), Succ(z1''), Succ(z1''), z2') → new_map10(Succ(z1''), Succ(z1''), z2') at position [] and matcher [z2' / z2, z1'' / z1']

new_map10(Succ(z1'), Succ(z1'), z2)new_map9(Succ(z1'), Succ(z1'), Succ(z1'), z2)
with rule new_map10(Succ(z0), Succ(z0), z1) → new_map9(Succ(z0), Succ(z0), Succ(z0), z1)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map11(wy201, wy1920, wy202, Zero, ba) → new_map11(new_primPlusNat0(Succ(wy1920), wy202), wy1920, new_primPlusNat0(Succ(wy1920), wy202), new_primPlusNat0(Succ(wy1920), wy202), ba)
new_map11(wy201, wy1920, wy202, Succ(wy2030), ba) → new_map12(wy201, wy1920, wy202, ba)
new_map12(wy201, wy1920, wy202, ba) → new_map11(new_primPlusNat0(Succ(wy1920), wy202), wy1920, new_primPlusNat0(Succ(wy1920), wy202), new_primPlusNat0(Succ(wy1920), wy202), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map11(wy201, wy1920, wy202, Zero, ba) → new_map11(new_primPlusNat0(Succ(wy1920), wy202), wy1920, new_primPlusNat0(Succ(wy1920), wy202), new_primPlusNat0(Succ(wy1920), wy202), ba)
The remaining pairs can at least be oriented weakly.

new_map11(wy201, wy1920, wy202, Succ(wy2030), ba) → new_map12(wy201, wy1920, wy202, ba)
new_map12(wy201, wy1920, wy202, ba) → new_map11(new_primPlusNat0(Succ(wy1920), wy202), wy1920, new_primPlusNat0(Succ(wy1920), wy202), new_primPlusNat0(Succ(wy1920), wy202), ba)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 0   
POL(Zero) = 1   
POL(new_map11(x1, x2, x3, x4, x5)) = x4   
POL(new_map12(x1, x2, x3, x4)) = 0   
POL(new_primPlusNat0(x1, x2)) = 0   

The following usable rules [17] were oriented:

new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map11(wy201, wy1920, wy202, Succ(wy2030), ba) → new_map12(wy201, wy1920, wy202, ba)
new_map12(wy201, wy1920, wy202, ba) → new_map11(new_primPlusNat0(Succ(wy1920), wy202), wy1920, new_primPlusNat0(Succ(wy1920), wy202), new_primPlusNat0(Succ(wy1920), wy202), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map12(wy201, wy1920, wy202, ba) → new_map11(new_primPlusNat0(Succ(wy1920), wy202), wy1920, new_primPlusNat0(Succ(wy1920), wy202), new_primPlusNat0(Succ(wy1920), wy202), ba) at position [3] we obtained the following new rules:

new_map12(y0, x0, Succ(x1), y3) → new_map11(new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y3)
new_map12(y0, x0, Zero, y3) → new_map11(new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map12(y0, x0, Succ(x1), y3) → new_map11(new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y3)
new_map11(wy201, wy1920, wy202, Succ(wy2030), ba) → new_map12(wy201, wy1920, wy202, ba)
new_map12(y0, x0, Zero, y3) → new_map11(new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y3)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map12(y0, x0, Succ(x1), y3) → new_map11(new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y3) at position [0] we obtained the following new rules:

new_map12(y0, x0, Succ(x1), y3) → new_map11(Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map12(y0, x0, Succ(x1), y3) → new_map11(Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y3)
new_map11(wy201, wy1920, wy202, Succ(wy2030), ba) → new_map12(wy201, wy1920, wy202, ba)
new_map12(y0, x0, Zero, y3) → new_map11(new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y3)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map12(y0, x0, Zero, y3) → new_map11(new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y3) at position [0] we obtained the following new rules:

new_map12(y0, x0, Zero, y3) → new_map11(Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map12(y0, x0, Succ(x1), y3) → new_map11(Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y3)
new_map12(y0, x0, Zero, y3) → new_map11(Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y3)
new_map11(wy201, wy1920, wy202, Succ(wy2030), ba) → new_map12(wy201, wy1920, wy202, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map12(y0, x0, Succ(x1), y3) → new_map11(Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y3) at position [2] we obtained the following new rules:

new_map12(y0, x0, Succ(x1), y3) → new_map11(Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map12(y0, x0, Zero, y3) → new_map11(Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y3)
new_map12(y0, x0, Succ(x1), y3) → new_map11(Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y3)
new_map11(wy201, wy1920, wy202, Succ(wy2030), ba) → new_map12(wy201, wy1920, wy202, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map12(y0, x0, Zero, y3) → new_map11(Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y3) at position [2] we obtained the following new rules:

new_map12(y0, x0, Zero, y3) → new_map11(Succ(x0), x0, Succ(x0), Succ(x0), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map12(y0, x0, Zero, y3) → new_map11(Succ(x0), x0, Succ(x0), Succ(x0), y3)
new_map12(y0, x0, Succ(x1), y3) → new_map11(Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y3)
new_map11(wy201, wy1920, wy202, Succ(wy2030), ba) → new_map12(wy201, wy1920, wy202, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map11(wy201, wy1920, wy202, Succ(wy2030), ba) → new_map12(wy201, wy1920, wy202, ba) we obtained the following new rules:

new_map11(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), Succ(Succ(y_2)), z3) → new_map12(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), z3)
new_map11(Succ(z1), z1, Succ(z1), Succ(z1), z2) → new_map12(Succ(z1), z1, Succ(z1), z2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Instantiation
QDP
                                                ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map11(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), Succ(Succ(y_2)), z3) → new_map12(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), z3)
new_map12(y0, x0, Zero, y3) → new_map11(Succ(x0), x0, Succ(x0), Succ(x0), y3)
new_map12(y0, x0, Succ(x1), y3) → new_map11(Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y3)
new_map11(Succ(z1), z1, Succ(z1), Succ(z1), z2) → new_map12(Succ(z1), z1, Succ(z1), z2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map11(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), Succ(Succ(y_2)), z3) → new_map12(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), z3)
new_map12(y0, x0, Succ(x1), y3) → new_map11(Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y3)
new_map11(Succ(z1), z1, Succ(z1), Succ(z1), z2) → new_map12(Succ(z1), z1, Succ(z1), z2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map12(y0, x0, Succ(x1), y3) → new_map11(Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y3) we obtained the following new rules:

new_map12(Succ(Succ(z0)), z1, Succ(Succ(z2)), z4) → new_map11(Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z1, Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z4)
new_map12(Succ(z0), z0, Succ(z0), z1) → new_map11(Succ(Succ(new_primPlusNat0(z0, z0))), z0, Succ(Succ(new_primPlusNat0(z0, z0))), Succ(Succ(new_primPlusNat0(z0, z0))), z1)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Instantiation
QDP
                                                        ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map12(Succ(Succ(z0)), z1, Succ(Succ(z2)), z4) → new_map11(Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z1, Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z4)
new_map11(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), Succ(Succ(y_2)), z3) → new_map12(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), z3)
new_map12(Succ(z0), z0, Succ(z0), z1) → new_map11(Succ(Succ(new_primPlusNat0(z0, z0))), z0, Succ(Succ(new_primPlusNat0(z0, z0))), Succ(Succ(new_primPlusNat0(z0, z0))), z1)
new_map11(Succ(z1), z1, Succ(z1), Succ(z1), z2) → new_map12(Succ(z1), z1, Succ(z1), z2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map11(Succ(z1), z1, Succ(z1), Succ(z1), z2) → new_map12(Succ(z1), z1, Succ(z1), z2) we obtained the following new rules:

new_map11(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), z3) → new_map12(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), z3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Instantiation
QDP
                                                            ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map11(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), Succ(Succ(y_2)), z3) → new_map12(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), z3)
new_map12(Succ(Succ(z0)), z1, Succ(Succ(z2)), z4) → new_map11(Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z1, Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z4)
new_map12(Succ(z0), z0, Succ(z0), z1) → new_map11(Succ(Succ(new_primPlusNat0(z0, z0))), z0, Succ(Succ(new_primPlusNat0(z0, z0))), Succ(Succ(new_primPlusNat0(z0, z0))), z1)
new_map11(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), z3) → new_map12(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), z3)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map12(Succ(z0), z0, Succ(z0), z1) → new_map11(Succ(Succ(new_primPlusNat0(z0, z0))), z0, Succ(Succ(new_primPlusNat0(z0, z0))), Succ(Succ(new_primPlusNat0(z0, z0))), z1) we obtained the following new rules:

new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), Succ(z0), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), z4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Instantiation
                                                          ↳ QDP
                                                            ↳ Instantiation
QDP
                                                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map12(Succ(Succ(z0)), z1, Succ(Succ(z2)), z4) → new_map11(Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z1, Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z4)
new_map11(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), Succ(Succ(y_2)), z3) → new_map12(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), z3)
new_map11(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), z3) → new_map12(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), z3)
new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), Succ(z0), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), z4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), Succ(z0), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), z4) at position [0,0,0] we obtained the following new rules:

new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(z0), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), z4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Instantiation
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Rewriting
QDP
                                                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map11(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), Succ(Succ(y_2)), z3) → new_map12(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), z3)
new_map12(Succ(Succ(z0)), z1, Succ(Succ(z2)), z4) → new_map11(Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z1, Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z4)
new_map11(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), z3) → new_map12(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), z3)
new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(z0), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), z4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(z0), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), z4) at position [2,0,0] we obtained the following new rules:

new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(z0), Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), z4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Instantiation
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
QDP
                                                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map12(Succ(Succ(z0)), z1, Succ(Succ(z2)), z4) → new_map11(Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z1, Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z4)
new_map11(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), Succ(Succ(y_2)), z3) → new_map12(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), z3)
new_map11(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), z3) → new_map12(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), z3)
new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(z0), Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), z4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(z0), Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(Succ(new_primPlusNat0(Succ(z0), Succ(z0)))), z4) at position [3,0,0] we obtained the following new rules:

new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(z0), Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), z4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Instantiation
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
QDP
                                                                            ↳ MNOCProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map11(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), Succ(Succ(y_2)), z3) → new_map12(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), z3)
new_map12(Succ(Succ(z0)), z1, Succ(Succ(z2)), z4) → new_map11(Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z1, Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z4)
new_map11(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), z3) → new_map12(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), z3)
new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(z0), Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), z4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Instantiation
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ MNOCProof
QDP
                                                                                ↳ NonTerminationProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map12(Succ(Succ(z0)), z1, Succ(Succ(z2)), z4) → new_map11(Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z1, Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z4)
new_map11(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), Succ(Succ(y_2)), z3) → new_map12(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), z3)
new_map11(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), z3) → new_map12(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), z3)
new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(z0), Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), z4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

new_map12(Succ(Succ(z0)), z1, Succ(Succ(z2)), z4) → new_map11(Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z1, Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z4)
new_map11(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), Succ(Succ(y_2)), z3) → new_map12(Succ(Succ(y_0)), z1, Succ(Succ(y_1)), z3)
new_map11(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), z3) → new_map12(Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), z3)
new_map12(Succ(Succ(z0)), Succ(z0), Succ(Succ(z0)), z4) → new_map11(Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(z0), Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), Succ(Succ(Succ(Succ(new_primPlusNat0(z0, z0))))), z4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))


s = new_map11(Succ(Succ(y_0)), z1', Succ(Succ(y_1)), Succ(Succ(y_2)), z3) evaluates to t =new_map11(Succ(Succ(new_primPlusNat0(z1', Succ(y_1)))), z1', Succ(Succ(new_primPlusNat0(z1', Succ(y_1)))), Succ(Succ(new_primPlusNat0(z1', Succ(y_1)))), z3)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

new_map11(Succ(Succ(y_0)), z1', Succ(Succ(y_1)), Succ(Succ(y_2)), z3)new_map12(Succ(Succ(y_0)), z1', Succ(Succ(y_1)), z3)
with rule new_map11(Succ(Succ(y_0')), z1'', Succ(Succ(y_1')), Succ(Succ(y_2')), z3') → new_map12(Succ(Succ(y_0')), z1'', Succ(Succ(y_1')), z3') at position [] and matcher [y_2' / y_2, z3' / z3, y_0' / y_0, y_1' / y_1, z1'' / z1']

new_map12(Succ(Succ(y_0)), z1', Succ(Succ(y_1)), z3)new_map11(Succ(Succ(new_primPlusNat0(z1', Succ(y_1)))), z1', Succ(Succ(new_primPlusNat0(z1', Succ(y_1)))), Succ(Succ(new_primPlusNat0(z1', Succ(y_1)))), z3)
with rule new_map12(Succ(Succ(z0)), z1, Succ(Succ(z2)), z4) → new_map11(Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z1, Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), Succ(Succ(new_primPlusNat0(z1, Succ(z2)))), z4)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map15(wy347, wy348, wy349, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb)
new_map13(wy276, wy283, wy284, Zero, ba) → new_map14(wy276, wy283, wy284, Zero, Succ(wy276), ba)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map14(wy347, wy348, wy349, Succ(wy3500), Zero, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
QDP
                        ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map15(wy347, wy348, wy349, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map14(wy347, wy348, wy349, Succ(wy3500), Zero, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map15(wy347, wy348, wy349, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map14(wy347, wy348, wy349, Succ(wy3500), Zero, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map15(wy347, wy348, wy349, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb) at position [3] we obtained the following new rules:

new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map15(y0, y1, Zero, y3) → new_map13(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map15(y0, y1, Zero, y3) → new_map13(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map14(wy347, wy348, wy349, Succ(wy3500), Zero, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
QDP
                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map14(wy347, wy348, wy349, Succ(wy3500), Zero, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3) at position [1] we obtained the following new rules:

new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map14(wy347, wy348, wy349, Succ(wy3500), Zero, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3) at position [2] we obtained the following new rules:

new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map14(wy347, wy348, wy349, Succ(wy3500), Zero, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map14(wy347, wy348, wy349, Succ(wy3500), Zero, bb) → new_map13(wy347, new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), new_primPlusNat0(Zero, wy349), bb) at position [3] we obtained the following new rules:

new_map14(y0, y1, Zero, Succ(y3), Zero, y4) → new_map13(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y4)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map14(y0, y1, Zero, Succ(y3), Zero, y4) → new_map13(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y4)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
QDP
                                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4) at position [1] we obtained the following new rules:

new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4) at position [2] we obtained the following new rules:

new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
QDP
                                                                ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
QDP
                                                                    ↳ QReductionProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y4)

R is empty.
The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ QReductionProof
QDP
                                                                        ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y4)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map13(wy276, wy283, wy284, Succ(wy2850), ba) → new_map14(wy276, wy283, wy284, Succ(wy2850), Succ(wy276), ba) we obtained the following new rules:

new_map13(z0, Succ(z2), Succ(z2), Succ(z2), z3) → new_map14(z0, Succ(z2), Succ(z2), Succ(z2), Succ(z0), z3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ QReductionProof
                                                                      ↳ QDP
                                                                        ↳ Instantiation
QDP
                                                                            ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb)
new_map13(z0, Succ(z2), Succ(z2), Succ(z2), z3) → new_map14(z0, Succ(z2), Succ(z2), Succ(z2), Succ(z0), z3)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y4)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map14(wy347, wy348, wy349, Zero, Zero, bb) → new_map15(wy347, wy348, wy349, bb) we obtained the following new rules:

new_map14(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map15(x0, x1, Succ(y_2), x3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ QReductionProof
                                                                      ↳ QDP
                                                                        ↳ Instantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
QDP
                                                                                ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map15(x0, x1, Succ(y_2), x3)
new_map13(z0, Succ(z2), Succ(z2), Succ(z2), z3) → new_map14(z0, Succ(z2), Succ(z2), Succ(z2), Succ(z0), z3)
new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y4)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map14(wy347, wy348, wy349, Succ(wy3500), Succ(wy3510), bb) → new_map14(wy347, wy348, wy349, wy3500, wy3510, bb) we obtained the following new rules:

new_map14(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map14(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map14(x0, x1, x2, Succ(y_3), Succ(y_4), x5)
new_map14(x0, x1, Succ(y_2), Succ(Succ(y_3)), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Succ(y_3), Zero, x5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ QReductionProof
                                                                      ↳ QDP
                                                                        ↳ Instantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
QDP
                                                                                    ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map15(x0, x1, Succ(y_2), x3)
new_map14(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map14(x0, x1, x2, Succ(y_3), Succ(y_4), x5)
new_map14(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map13(z0, Succ(z2), Succ(z2), Succ(z2), z3) → new_map14(z0, Succ(z2), Succ(z2), Succ(z2), Succ(z0), z3)
new_map14(x0, x1, Succ(y_2), Succ(Succ(y_3)), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Succ(y_3), Zero, x5)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y4)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map13(z0, Succ(z2), Succ(z2), Succ(z2), z3) → new_map14(z0, Succ(z2), Succ(z2), Succ(z2), Succ(z0), z3) we obtained the following new rules:

new_map13(Zero, Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map14(Zero, Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Zero), x2)
new_map13(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map14(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_4)), x2)
new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map14(Zero, Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero), x2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ QReductionProof
                                                                      ↳ QDP
                                                                        ↳ Instantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
QDP
                                                                                        ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map13(Zero, Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map14(Zero, Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Zero), x2)
new_map14(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map15(x0, x1, Succ(y_2), x3)
new_map14(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map14(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map14(x0, x1, x2, Succ(y_3), Succ(y_4), x5)
new_map13(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map14(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_4)), x2)
new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map14(Zero, Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map14(x0, x1, Succ(y_2), Succ(Succ(y_3)), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Succ(y_3), Zero, x5)
new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y4)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map15(y0, y1, Succ(x0), y3) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y3) we obtained the following new rules:

new_map15(Succ(y_0), x1, Succ(Succ(y_1)), x3) → new_map13(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map15(Zero, x1, Succ(Zero), x3) → new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map15(Zero, x1, Succ(Succ(y_0)), x3) → new_map13(Zero, Succ(Succ(y_0)), Succ(Succ(y_0)), Succ(Succ(y_0)), x3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ QReductionProof
                                                                      ↳ QDP
                                                                        ↳ Instantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
QDP
                                                                                            ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map15(x0, x1, Succ(y_2), x3)
new_map13(Zero, Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map14(Zero, Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Zero), x2)
new_map15(Succ(y_0), x1, Succ(Succ(y_1)), x3) → new_map13(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map14(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map14(x0, x1, x2, Succ(y_3), Succ(y_4), x5)
new_map14(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map13(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map14(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_4)), x2)
new_map15(Zero, x1, Succ(Zero), x3) → new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map14(x0, x1, Succ(y_2), Succ(Succ(y_3)), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Succ(y_3), Zero, x5)
new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map14(Zero, Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map15(Zero, x1, Succ(Succ(y_0)), x3) → new_map13(Zero, Succ(Succ(y_0)), Succ(Succ(y_0)), Succ(Succ(y_0)), x3)
new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y4)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map14(y0, y1, Succ(x0), Succ(y3), Zero, y4) → new_map13(y0, Succ(x0), Succ(x0), Succ(x0), y4) we obtained the following new rules:

new_map14(Succ(y_0), x1, Succ(Succ(y_1)), Succ(x3), Zero, x4) → new_map13(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map14(Zero, x1, Succ(Succ(y_0)), Succ(x3), Zero, x4) → new_map13(Zero, Succ(Succ(y_0)), Succ(Succ(y_0)), Succ(Succ(y_0)), x4)
new_map14(Zero, x1, Succ(Zero), Succ(x3), Zero, x4) → new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ QReductionProof
                                                                      ↳ QDP
                                                                        ↳ Instantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
QDP
                                                                                                ↳ NonTerminationProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map14(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map15(x0, x1, Succ(y_2), x3)
new_map14(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map14(x0, x1, x2, Succ(y_3), Succ(y_4), x5)
new_map14(Zero, x1, Succ(Succ(y_0)), Succ(x3), Zero, x4) → new_map13(Zero, Succ(Succ(y_0)), Succ(Succ(y_0)), Succ(Succ(y_0)), x4)
new_map15(Zero, x1, Succ(Zero), x3) → new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map14(Zero, Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map15(Zero, x1, Succ(Succ(y_0)), x3) → new_map13(Zero, Succ(Succ(y_0)), Succ(Succ(y_0)), Succ(Succ(y_0)), x3)
new_map13(Zero, Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map14(Zero, Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Zero), x2)
new_map14(Succ(y_0), x1, Succ(Succ(y_1)), Succ(x3), Zero, x4) → new_map13(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map15(Succ(y_0), x1, Succ(Succ(y_1)), x3) → new_map13(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map14(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map13(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map14(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_4)), x2)
new_map14(x0, x1, Succ(y_2), Succ(Succ(y_3)), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Succ(y_3), Zero, x5)
new_map14(Zero, x1, Succ(Zero), Succ(x3), Zero, x4) → new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x4)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

new_map14(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map15(x0, x1, Succ(y_2), x3)
new_map14(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map14(x0, x1, x2, Succ(y_3), Succ(y_4), x5)
new_map14(Zero, x1, Succ(Succ(y_0)), Succ(x3), Zero, x4) → new_map13(Zero, Succ(Succ(y_0)), Succ(Succ(y_0)), Succ(Succ(y_0)), x4)
new_map15(Zero, x1, Succ(Zero), x3) → new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map14(Zero, Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map15(Zero, x1, Succ(Succ(y_0)), x3) → new_map13(Zero, Succ(Succ(y_0)), Succ(Succ(y_0)), Succ(Succ(y_0)), x3)
new_map13(Zero, Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map14(Zero, Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Zero), x2)
new_map14(Succ(y_0), x1, Succ(Succ(y_1)), Succ(x3), Zero, x4) → new_map13(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map15(Succ(y_0), x1, Succ(Succ(y_1)), x3) → new_map13(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map14(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map13(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map14(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_4)), x2)
new_map14(x0, x1, Succ(y_2), Succ(Succ(y_3)), Succ(Zero), x5) → new_map14(x0, x1, Succ(y_2), Succ(y_3), Zero, x5)
new_map14(Zero, x1, Succ(Zero), Succ(x3), Zero, x4) → new_map13(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x4)

The TRS R consists of the following rules:none


s = new_map13(Zero, Succ(Succ(y_3')), Succ(Succ(y_3')), Succ(Succ(y_3')), x2) evaluates to t =new_map13(Zero, Succ(Succ(y_3')), Succ(Succ(y_3')), Succ(Succ(y_3')), x2)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

new_map13(Zero, Succ(Succ(y_3')), Succ(Succ(y_3')), Succ(Succ(y_3')), x2)new_map14(Zero, Succ(Succ(y_3')), Succ(Succ(y_3')), Succ(Succ(y_3')), Succ(Zero), x2)
with rule new_map13(Zero, Succ(Succ(y_3'')), Succ(Succ(y_3'')), Succ(Succ(y_3'')), x2') → new_map14(Zero, Succ(Succ(y_3'')), Succ(Succ(y_3'')), Succ(Succ(y_3'')), Succ(Zero), x2') at position [] and matcher [y_3'' / y_3', x2' / x2]

new_map14(Zero, Succ(Succ(y_3')), Succ(Succ(y_3')), Succ(Succ(y_3')), Succ(Zero), x2)new_map14(Zero, Succ(Succ(y_3')), Succ(Succ(y_3')), Succ(y_3'), Zero, x2)
with rule new_map14(x0, x1', Succ(y_2), Succ(Succ(y_3)), Succ(Zero), x5) → new_map14(x0, x1', Succ(y_2), Succ(y_3), Zero, x5) at position [] and matcher [y_2 / Succ(y_3'), x1' / Succ(Succ(y_3')), y_3 / y_3', x5 / x2, x0 / Zero]

new_map14(Zero, Succ(Succ(y_3')), Succ(Succ(y_3')), Succ(y_3'), Zero, x2)new_map13(Zero, Succ(Succ(y_3')), Succ(Succ(y_3')), Succ(Succ(y_3')), x2)
with rule new_map14(Zero, x1, Succ(Succ(y_0)), Succ(x3), Zero, x4) → new_map13(Zero, Succ(Succ(y_0)), Succ(Succ(y_0)), Succ(Succ(y_0)), x4)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map17(wy323, Succ(wy3240), Zero, wy326, bb) → new_map18(wy323, wy3240, wy326, Succ(wy3240), Succ(wy323), bb)
new_map18(wy422, wy423, wy424, Succ(wy4250), Succ(wy4260), bc) → new_map18(wy422, wy423, wy424, wy4250, wy4260, bc)
new_map18(wy422, wy423, wy424, Succ(wy4250), Zero, bc) → new_map16(wy422, wy424, wy423, bc)
new_map19(wy422, wy423, wy424, bc) → new_map16(wy422, wy424, wy423, bc)
new_map17(wy323, Succ(wy3240), Succ(wy3250), wy326, bb) → new_map17(wy323, wy3240, wy3250, wy326, bb)
new_map16(wy276, wy2780, wy279, ba) → new_map17(wy276, Succ(wy279), Succ(wy2780), wy2780, ba)
new_map18(wy422, wy423, wy424, Zero, Zero, bc) → new_map19(wy422, wy423, wy424, bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map17(wy323, Succ(wy3240), Succ(wy3250), wy326, bb) → new_map17(wy323, wy3240, wy3250, wy326, bb)
The remaining pairs can at least be oriented weakly.

new_map17(wy323, Succ(wy3240), Zero, wy326, bb) → new_map18(wy323, wy3240, wy326, Succ(wy3240), Succ(wy323), bb)
new_map18(wy422, wy423, wy424, Succ(wy4250), Succ(wy4260), bc) → new_map18(wy422, wy423, wy424, wy4250, wy4260, bc)
new_map18(wy422, wy423, wy424, Succ(wy4250), Zero, bc) → new_map16(wy422, wy424, wy423, bc)
new_map19(wy422, wy423, wy424, bc) → new_map16(wy422, wy424, wy423, bc)
new_map16(wy276, wy2780, wy279, ba) → new_map17(wy276, Succ(wy279), Succ(wy2780), wy2780, ba)
new_map18(wy422, wy423, wy424, Zero, Zero, bc) → new_map19(wy422, wy423, wy424, bc)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_map16(x1, x2, x3, x4)) = 1 + x3   
POL(new_map17(x1, x2, x3, x4, x5)) = x2   
POL(new_map18(x1, x2, x3, x4, x5, x6)) = 1 + x2   
POL(new_map19(x1, x2, x3, x4)) = 1 + x2   

The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map17(wy323, Succ(wy3240), Zero, wy326, bb) → new_map18(wy323, wy3240, wy326, Succ(wy3240), Succ(wy323), bb)
new_map18(wy422, wy423, wy424, Succ(wy4250), Succ(wy4260), bc) → new_map18(wy422, wy423, wy424, wy4250, wy4260, bc)
new_map18(wy422, wy423, wy424, Succ(wy4250), Zero, bc) → new_map16(wy422, wy424, wy423, bc)
new_map19(wy422, wy423, wy424, bc) → new_map16(wy422, wy424, wy423, bc)
new_map18(wy422, wy423, wy424, Zero, Zero, bc) → new_map19(wy422, wy423, wy424, bc)
new_map16(wy276, wy2780, wy279, ba) → new_map17(wy276, Succ(wy279), Succ(wy2780), wy2780, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 5 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
QDP
                            ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map18(wy422, wy423, wy424, Succ(wy4250), Succ(wy4260), bc) → new_map18(wy422, wy423, wy424, wy4250, wy4260, bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Zero, bb) → new_map20(wy339, new_primPlusNat0(Succ(wy341), wy342), wy341, new_primPlusNat0(Succ(wy341), wy342), new_primPlusNat0(Succ(wy341), wy342), bb)
new_map22(wy339, wy340, wy341, wy342, bb) → new_map20(wy339, new_primPlusNat0(Succ(wy341), wy342), wy341, new_primPlusNat0(Succ(wy341), wy342), new_primPlusNat0(Succ(wy341), wy342), bb)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map20(wy276, wy280, wy2770, wy281, Zero, ba) → new_map21(wy276, wy280, wy2770, wy281, Zero, Succ(wy276), ba)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
QDP
                        ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map22(wy339, wy340, wy341, wy342, bb) → new_map20(wy339, new_primPlusNat0(Succ(wy341), wy342), wy341, new_primPlusNat0(Succ(wy341), wy342), new_primPlusNat0(Succ(wy341), wy342), bb)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Zero, bb) → new_map20(wy339, new_primPlusNat0(Succ(wy341), wy342), wy341, new_primPlusNat0(Succ(wy341), wy342), new_primPlusNat0(Succ(wy341), wy342), bb)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Zero, bb) → new_map20(wy339, new_primPlusNat0(Succ(wy341), wy342), wy341, new_primPlusNat0(Succ(wy341), wy342), new_primPlusNat0(Succ(wy341), wy342), bb) at position [4] we obtained the following new rules:

new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map22(wy339, wy340, wy341, wy342, bb) → new_map20(wy339, new_primPlusNat0(Succ(wy341), wy342), wy341, new_primPlusNat0(Succ(wy341), wy342), new_primPlusNat0(Succ(wy341), wy342), bb)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5) at position [1] we obtained the following new rules:

new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map22(wy339, wy340, wy341, wy342, bb) → new_map20(wy339, new_primPlusNat0(Succ(wy341), wy342), wy341, new_primPlusNat0(Succ(wy341), wy342), new_primPlusNat0(Succ(wy341), wy342), bb)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5) at position [1] we obtained the following new rules:

new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map22(wy339, wy340, wy341, wy342, bb) → new_map20(wy339, new_primPlusNat0(Succ(wy341), wy342), wy341, new_primPlusNat0(Succ(wy341), wy342), new_primPlusNat0(Succ(wy341), wy342), bb)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5) at position [3] we obtained the following new rules:

new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map22(wy339, wy340, wy341, wy342, bb) → new_map20(wy339, new_primPlusNat0(Succ(wy341), wy342), wy341, new_primPlusNat0(Succ(wy341), wy342), new_primPlusNat0(Succ(wy341), wy342), bb)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5) at position [3] we obtained the following new rules:

new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map22(wy339, wy340, wy341, wy342, bb) → new_map20(wy339, new_primPlusNat0(Succ(wy341), wy342), wy341, new_primPlusNat0(Succ(wy341), wy342), new_primPlusNat0(Succ(wy341), wy342), bb)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map22(wy339, wy340, wy341, wy342, bb) → new_map20(wy339, new_primPlusNat0(Succ(wy341), wy342), wy341, new_primPlusNat0(Succ(wy341), wy342), new_primPlusNat0(Succ(wy341), wy342), bb) at position [4] we obtained the following new rules:

new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4) at position [1] we obtained the following new rules:

new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4) at position [1] we obtained the following new rules:

new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
QDP
                                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4) at position [3] we obtained the following new rules:

new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4) at position [3] we obtained the following new rules:

new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
QDP
                                                                ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba)
new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map20(wy276, wy280, wy2770, wy281, Succ(wy2820), ba) → new_map21(wy276, wy280, wy2770, wy281, Succ(wy2820), Succ(wy276), ba) we obtained the following new rules:

new_map20(z0, Succ(z2), z2, Succ(z2), Succ(z2), z4) → new_map21(z0, Succ(z2), z2, Succ(z2), Succ(z2), Succ(z0), z4)
new_map20(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map21(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
QDP
                                                                    ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map20(z0, Succ(z2), z2, Succ(z2), Succ(z2), z4) → new_map21(z0, Succ(z2), z2, Succ(z2), Succ(z2), Succ(z0), z4)
new_map20(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map21(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z5)
new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map21(wy339, wy340, wy341, wy342, Succ(wy3430), Succ(wy3440), bb) → new_map21(wy339, wy340, wy341, wy342, wy3430, wy3440, bb) we obtained the following new rules:

new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map21(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
QDP
                                                                        ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map20(z0, Succ(z2), z2, Succ(z2), Succ(z2), z4) → new_map21(z0, Succ(z2), z2, Succ(z2), Succ(z2), Succ(z0), z4)
new_map20(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map21(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z5)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map21(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map21(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map21(wy339, wy340, wy341, wy342, Zero, Zero, bb) → new_map22(wy339, wy340, wy341, wy342, bb) we obtained the following new rules:

new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map21(x0, x1, x2, Zero, Zero, Zero, x4) → new_map22(x0, x1, x2, Zero, x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
QDP
                                                                            ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(x0, x1, x2, Zero, Zero, Zero, x4) → new_map22(x0, x1, x2, Zero, x4)
new_map20(z0, Succ(z2), z2, Succ(z2), Succ(z2), z4) → new_map21(z0, Succ(z2), z2, Succ(z2), Succ(z2), Succ(z0), z4)
new_map20(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map21(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z5)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map21(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map21(x0, x1, x2, Zero, Succ(y_3), Zero, x6)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map20(z0, Succ(z2), z2, Succ(z2), Succ(z2), z4) → new_map21(z0, Succ(z2), z2, Succ(z2), Succ(z2), Succ(z0), z4) we obtained the following new rules:

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map21(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
QDP
                                                                                ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map21(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map21(x0, x1, x2, Zero, Zero, Zero, x4) → new_map22(x0, x1, x2, Zero, x4)
new_map20(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map21(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z5)
new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map21(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map21(x0, x1, x2, Zero, Succ(y_3), Zero, x6)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map21(y0, y1, x0, Zero, Succ(y4), Zero, y5) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5) we obtained the following new rules:

new_map21(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map21(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map21(x0, x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map21(Zero, x1, Succ(y_0), Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
QDP
                                                                                    ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map21(x0, x1, x2, Zero, Zero, Zero, x4) → new_map22(x0, x1, x2, Zero, x4)
new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map21(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map21(x0, x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map20(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map21(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z5)
new_map21(Zero, x1, Succ(y_0), Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x4)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map21(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map21(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map21(x0, x1, x2, Zero, Succ(y_3), Zero, x6)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map22(y0, y1, x0, Zero, y4) → new_map20(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4) we obtained the following new rules:

new_map22(x0, x1, Succ(y_1), Zero, x3) → new_map20(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map22(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map22(Zero, x1, Zero, Zero, x3) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map22(Zero, x1, Succ(y_0), Zero, x3) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
QDP
                                                                                        ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map21(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map21(x0, x1, x2, Zero, Zero, Zero, x4) → new_map22(x0, x1, x2, Zero, x4)
new_map22(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map21(x0, x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map20(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map21(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z5)
new_map22(Zero, x1, Succ(y_0), Zero, x3) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x3)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map21(Zero, x1, Succ(y_0), Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x4)
new_map22(x0, x1, Succ(y_1), Zero, x3) → new_map20(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map21(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map22(Zero, x1, Zero, Zero, x3) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map21(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map21(x0, x1, x2, Zero, Succ(y_3), Zero, x6)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map20(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map21(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z5) we obtained the following new rules:

new_map20(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Zero), x5)
new_map20(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
QDP
                                                                                            ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map21(x0, x1, x2, Zero, Zero, Zero, x4) → new_map22(x0, x1, x2, Zero, x4)
new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map21(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map22(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map21(x0, x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map20(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)
new_map21(Zero, x1, Succ(y_0), Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x4)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map22(Zero, x1, Succ(y_0), Zero, x3) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x3)
new_map22(x0, x1, Succ(y_1), Zero, x3) → new_map20(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map20(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Zero), x5)
new_map21(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map22(Zero, x1, Zero, Zero, x3) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map21(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map21(x0, x1, x2, Zero, Succ(y_3), Zero, x6)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map21(x0, x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4) we obtained the following new rules:

new_map21(Succ(y_0), x1, Succ(x2), Zero, Succ(x3), Zero, x4) → new_map20(Succ(y_0), Succ(Succ(x2)), Succ(x2), Succ(Succ(x2)), Succ(Succ(x2)), x4)
new_map21(Zero, x1, Succ(x2), Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Succ(x2)), Succ(x2), Succ(Succ(x2)), Succ(Succ(x2)), x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
QDP
                                                                                                ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map21(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map21(x0, x1, x2, Zero, Zero, Zero, x4) → new_map22(x0, x1, x2, Zero, x4)
new_map22(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map22(Zero, x1, Succ(y_0), Zero, x3) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x3)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map21(Zero, x1, Succ(y_0), Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x4)
new_map20(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)
new_map22(x0, x1, Succ(y_1), Zero, x3) → new_map20(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map20(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Zero), x5)
new_map21(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map22(Zero, x1, Zero, Zero, x3) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map21(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map21(x0, x1, x2, Zero, Succ(y_3), Zero, x6)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map22(x0, x1, Succ(y_1), Zero, x3) → new_map20(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3) we obtained the following new rules:

new_map22(Succ(y_0), x1, Succ(x2), Zero, x3) → new_map20(Succ(y_0), Succ(Succ(x2)), Succ(x2), Succ(Succ(x2)), Succ(Succ(x2)), x3)
new_map22(Zero, x1, Succ(x2), Zero, x3) → new_map20(Zero, Succ(Succ(x2)), Succ(x2), Succ(Succ(x2)), Succ(Succ(x2)), x3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
QDP
                                                                                                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map21(x0, x1, x2, Zero, Zero, Zero, x4) → new_map22(x0, x1, x2, Zero, x4)
new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map21(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map22(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map20(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)
new_map21(Zero, x1, Succ(y_0), Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x4)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map22(Zero, x1, Succ(y_0), Zero, x3) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x3)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map20(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Zero), x5)
new_map21(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map22(Zero, x1, Zero, Zero, x3) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map21(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map21(x0, x1, x2, Zero, Succ(y_3), Zero, x6)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map22(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map21(Zero, x1, Succ(y_0), Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x4)
new_map22(Zero, x1, Succ(y_0), Zero, x3) → new_map20(Zero, Succ(Succ(y_0)), Succ(y_0), Succ(Succ(y_0)), Succ(Succ(y_0)), x3)
new_map21(Succ(y_0), x1, Succ(y_1), Zero, Succ(x3), Zero, x4) → new_map20(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map21(Zero, x1, Zero, Zero, Succ(x3), Zero, x4) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map22(Zero, x1, Zero, Zero, x3) → new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
The remaining pairs can at least be oriented weakly.

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map21(x0, x1, x2, Zero, Zero, Zero, x4) → new_map22(x0, x1, x2, Zero, x4)
new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map21(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map20(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map20(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Zero), x5)
new_map21(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map21(x0, x1, x2, Zero, Succ(y_3), Zero, x6)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 0   
POL(Zero) = 1   
POL(new_map20(x1, x2, x3, x4, x5, x6)) = x3   
POL(new_map21(x1, x2, x3, x4, x5, x6, x7)) = x3 + x4   
POL(new_map22(x1, x2, x3, x4, x5)) = x3 + x4   
POL(new_primPlusNat0(x1, x2)) = 0   

The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
QDP
                                                                                                        ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map21(x0, x1, x2, Zero, Zero, Zero, x4) → new_map22(x0, x1, x2, Zero, x4)
new_map20(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map21(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map20(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map20(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Zero), x5)
new_map21(x0, x1, x2, Zero, Succ(Succ(y_3)), Succ(Zero), x6) → new_map21(x0, x1, x2, Zero, Succ(y_3), Zero, x6)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
QDP
                                                                                                            ↳ MNOCProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map20(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Zero), x5)
new_map20(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ MNOCProof
QDP
                                                                                                                ↳ NonTerminationProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map20(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Zero), x5)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map20(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

new_map20(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Zero, Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Zero), x2)
new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map21(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map21(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map21(x0, x1, x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0, x1, x2, Succ(y_3), Succ(y_4), Zero, x6)
new_map20(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map21(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map21(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map22(x0, x1, x2, Succ(y_3), x4)
new_map22(y0, y1, x0, Succ(x1), y4) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map20(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Zero, Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Zero), x5)
new_map21(x0, x1, x2, x3, Succ(Zero), Succ(Zero), x6) → new_map21(x0, x1, x2, x3, Zero, Zero, x6)
new_map20(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map21(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))


s = new_map20(Zero, Succ(Succ(x1)), x2', Succ(Succ(x3)), Succ(Succ(x4)), x5) evaluates to t =new_map20(Zero, Succ(Succ(new_primPlusNat0(x2', Succ(x3)))), x2', Succ(Succ(new_primPlusNat0(x2', Succ(x3)))), Succ(Succ(new_primPlusNat0(x2', Succ(x3)))), x5)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

new_map20(Zero, Succ(Succ(x1)), x2', Succ(Succ(x3)), Succ(Succ(x4)), x5)new_map21(Zero, Succ(Succ(x1)), x2', Succ(Succ(x3)), Succ(Succ(x4)), Succ(Zero), x5)
with rule new_map20(Zero, Succ(Succ(x1')), x2'', Succ(Succ(x3')), Succ(Succ(x4')), x5') → new_map21(Zero, Succ(Succ(x1')), x2'', Succ(Succ(x3')), Succ(Succ(x4')), Succ(Zero), x5') at position [] and matcher [x2'' / x2', x1' / x1, x4' / x4, x3' / x3, x5' / x5]

new_map21(Zero, Succ(Succ(x1)), x2', Succ(Succ(x3)), Succ(Succ(x4)), Succ(Zero), x5)new_map21(Zero, Succ(Succ(x1)), x2', Succ(Succ(x3)), Succ(x4), Zero, x5)
with rule new_map21(x0', x1', x2, Succ(y_3), Succ(Succ(y_4)), Succ(Zero), x6) → new_map21(x0', x1', x2, Succ(y_3), Succ(y_4), Zero, x6) at position [] and matcher [x6 / x5, y_4 / x4, x1' / Succ(Succ(x1)), y_3 / Succ(x3), x0' / Zero, x2 / x2']

new_map21(Zero, Succ(Succ(x1)), x2', Succ(Succ(x3)), Succ(x4), Zero, x5)new_map20(Zero, Succ(Succ(new_primPlusNat0(x2', Succ(x3)))), x2', Succ(Succ(new_primPlusNat0(x2', Succ(x3)))), Succ(Succ(new_primPlusNat0(x2', Succ(x3)))), x5)
with rule new_map21(y0, y1, x0, Succ(x1), Succ(y4), Zero, y5) → new_map20(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map23(wy276, Succ(wy2770), Succ(wy2780), wy279, ba) → new_map23(wy276, wy2770, wy2780, wy279, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map24(wy306, wy359, wy309, wy360, Zero, ba) → new_map25(wy306, wy359, wy309, wy360, ba)
new_map25(wy306, wy359, wy309, wy360, ba) → new_map24(wy306, new_primPlusNat0(Succ(wy309), wy360), wy309, new_primPlusNat0(Succ(wy309), wy360), new_primPlusNat0(Succ(wy309), wy360), ba)
new_map24(wy306, wy359, wy309, wy360, Succ(wy3610), ba) → new_map24(wy306, new_primPlusNat0(Succ(wy309), wy360), wy309, new_primPlusNat0(Succ(wy309), wy360), new_primPlusNat0(Succ(wy309), wy360), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map25(wy306, wy359, wy309, wy360, ba) → new_map24(wy306, new_primPlusNat0(Succ(wy309), wy360), wy309, new_primPlusNat0(Succ(wy309), wy360), new_primPlusNat0(Succ(wy309), wy360), ba)
The remaining pairs can at least be oriented weakly.

new_map24(wy306, wy359, wy309, wy360, Zero, ba) → new_map25(wy306, wy359, wy309, wy360, ba)
new_map24(wy306, wy359, wy309, wy360, Succ(wy3610), ba) → new_map24(wy306, new_primPlusNat0(Succ(wy309), wy360), wy309, new_primPlusNat0(Succ(wy309), wy360), new_primPlusNat0(Succ(wy309), wy360), ba)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 0   
POL(Zero) = 1   
POL(new_map24(x1, x2, x3, x4, x5, x6)) = x5   
POL(new_map25(x1, x2, x3, x4, x5)) = 1   
POL(new_primPlusNat0(x1, x2)) = 0   

The following usable rules [17] were oriented:

new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map24(wy306, wy359, wy309, wy360, Zero, ba) → new_map25(wy306, wy359, wy309, wy360, ba)
new_map24(wy306, wy359, wy309, wy360, Succ(wy3610), ba) → new_map24(wy306, new_primPlusNat0(Succ(wy309), wy360), wy309, new_primPlusNat0(Succ(wy309), wy360), new_primPlusNat0(Succ(wy309), wy360), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
QDP
                            ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map24(wy306, wy359, wy309, wy360, Succ(wy3610), ba) → new_map24(wy306, new_primPlusNat0(Succ(wy309), wy360), wy309, new_primPlusNat0(Succ(wy309), wy360), new_primPlusNat0(Succ(wy309), wy360), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map24(wy306, wy359, wy309, wy360, Succ(wy3610), ba) → new_map24(wy306, new_primPlusNat0(Succ(wy309), wy360), wy309, new_primPlusNat0(Succ(wy309), wy360), new_primPlusNat0(Succ(wy309), wy360), ba) at position [4] we obtained the following new rules:

new_map24(y0, y1, x0, Zero, Succ(y4), y5) → new_map24(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map24(y0, y1, x0, Zero, Succ(y4), y5) → new_map24(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map24(y0, y1, x0, Zero, Succ(y4), y5) → new_map24(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5) at position [1] we obtained the following new rules:

new_map24(y0, y1, x0, Zero, Succ(y4), y5) → new_map24(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map24(y0, y1, x0, Zero, Succ(y4), y5) → new_map24(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5) at position [1] we obtained the following new rules:

new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map24(y0, y1, x0, Zero, Succ(y4), y5) → new_map24(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map24(y0, y1, x0, Zero, Succ(y4), y5) → new_map24(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5) at position [3] we obtained the following new rules:

new_map24(y0, y1, x0, Zero, Succ(y4), y5) → new_map24(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map24(y0, y1, x0, Zero, Succ(y4), y5) → new_map24(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5) at position [3] we obtained the following new rules:

new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
QDP
                                                ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map24(y0, y1, x0, Zero, Succ(y4), y5) → new_map24(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map24(y0, y1, x0, Succ(x1), Succ(y4), y5) → new_map24(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5) we obtained the following new rules:

new_map24(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map24(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Instantiation
QDP
                                                        ↳ MNOCProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map24(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map24(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ MNOCProof
QDP
                                                            ↳ NonTerminationProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map24(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map24(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_map24(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) → new_map24(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))


s = new_map24(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) evaluates to t =new_map24(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_map24(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z5) to new_map24(z0, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z2, Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), Succ(Succ(new_primPlusNat0(z2, Succ(y_1)))), z5).





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map28(wy401, wy402, wy403, ba) → new_map27(wy401, wy403, wy402, ba)
new_map29(wy306, Succ(wy3070), Zero, wy309, bc) → new_map26(wy306, wy3070, wy309, Succ(wy3070), Succ(wy306), bc)
new_map26(wy401, wy402, wy403, Succ(wy4040), Succ(wy4050), ba) → new_map26(wy401, wy402, wy403, wy4040, wy4050, ba)
new_map29(wy306, Zero, Zero, wy309, bc) → new_map29(wy306, Zero, Succ(wy309), wy309, bc)
new_map26(wy401, wy402, wy403, Zero, Succ(wy4050), ba) → new_map27(wy401, wy403, wy402, ba)
new_map26(wy401, wy402, wy403, Zero, Zero, ba) → new_map28(wy401, wy402, wy403, ba)
new_map27(wy237, wy2390, wy240, bb) → new_map29(wy237, Succ(wy240), Succ(wy2390), wy2390, bb)
new_map29(wy306, Succ(wy3070), Succ(wy3080), wy309, bc) → new_map29(wy306, wy3070, wy3080, wy309, bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
QDP
                        ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map28(wy401, wy402, wy403, ba) → new_map27(wy401, wy403, wy402, ba)
new_map29(wy306, Succ(wy3070), Zero, wy309, bc) → new_map26(wy306, wy3070, wy309, Succ(wy3070), Succ(wy306), bc)
new_map26(wy401, wy402, wy403, Succ(wy4040), Succ(wy4050), ba) → new_map26(wy401, wy402, wy403, wy4040, wy4050, ba)
new_map26(wy401, wy402, wy403, Zero, Succ(wy4050), ba) → new_map27(wy401, wy403, wy402, ba)
new_map26(wy401, wy402, wy403, Zero, Zero, ba) → new_map28(wy401, wy402, wy403, ba)
new_map27(wy237, wy2390, wy240, bb) → new_map29(wy237, Succ(wy240), Succ(wy2390), wy2390, bb)
new_map29(wy306, Succ(wy3070), Succ(wy3080), wy309, bc) → new_map29(wy306, wy3070, wy3080, wy309, bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map29(wy306, Succ(wy3070), Succ(wy3080), wy309, bc) → new_map29(wy306, wy3070, wy3080, wy309, bc)
The remaining pairs can at least be oriented weakly.

new_map28(wy401, wy402, wy403, ba) → new_map27(wy401, wy403, wy402, ba)
new_map29(wy306, Succ(wy3070), Zero, wy309, bc) → new_map26(wy306, wy3070, wy309, Succ(wy3070), Succ(wy306), bc)
new_map26(wy401, wy402, wy403, Succ(wy4040), Succ(wy4050), ba) → new_map26(wy401, wy402, wy403, wy4040, wy4050, ba)
new_map26(wy401, wy402, wy403, Zero, Succ(wy4050), ba) → new_map27(wy401, wy403, wy402, ba)
new_map26(wy401, wy402, wy403, Zero, Zero, ba) → new_map28(wy401, wy402, wy403, ba)
new_map27(wy237, wy2390, wy240, bb) → new_map29(wy237, Succ(wy240), Succ(wy2390), wy2390, bb)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_map26(x1, x2, x3, x4, x5, x6)) = 1 + x2   
POL(new_map27(x1, x2, x3, x4)) = 1 + x3   
POL(new_map28(x1, x2, x3, x4)) = 1 + x2   
POL(new_map29(x1, x2, x3, x4, x5)) = x2   

The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map29(wy306, Succ(wy3070), Zero, wy309, bc) → new_map26(wy306, wy3070, wy309, Succ(wy3070), Succ(wy306), bc)
new_map28(wy401, wy402, wy403, ba) → new_map27(wy401, wy403, wy402, ba)
new_map26(wy401, wy402, wy403, Succ(wy4040), Succ(wy4050), ba) → new_map26(wy401, wy402, wy403, wy4040, wy4050, ba)
new_map26(wy401, wy402, wy403, Zero, Succ(wy4050), ba) → new_map27(wy401, wy403, wy402, ba)
new_map26(wy401, wy402, wy403, Zero, Zero, ba) → new_map28(wy401, wy402, wy403, ba)
new_map27(wy237, wy2390, wy240, bb) → new_map29(wy237, Succ(wy240), Succ(wy2390), wy2390, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 5 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map26(wy401, wy402, wy403, Succ(wy4040), Succ(wy4050), ba) → new_map26(wy401, wy402, wy403, wy4040, wy4050, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map30(wy60, wy61, Succ(wy620), Succ(wy630), ba) → new_map30(wy60, wy61, wy620, wy630, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map31(wy271, Succ(wy2720), Zero, wy274, ba) → new_map32(wy271, wy274, wy2720, ba)
new_map32(wy187, wy1890, wy190, bb) → new_map31(wy187, Succ(wy190), Succ(wy1890), wy1890, bb)
new_map31(wy271, Succ(wy2720), Succ(wy2730), wy274, ba) → new_map31(wy271, wy2720, wy2730, wy274, ba)
new_map31(Succ(wy2710), Zero, Zero, wy274, ba) → new_map31(Succ(wy2710), Zero, Succ(wy274), wy274, ba)
new_map31(Zero, Zero, Zero, wy274, ba) → new_map31(Zero, Zero, Succ(wy274), wy274, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
QDP
                        ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map31(wy271, Succ(wy2720), Zero, wy274, ba) → new_map32(wy271, wy274, wy2720, ba)
new_map32(wy187, wy1890, wy190, bb) → new_map31(wy187, Succ(wy190), Succ(wy1890), wy1890, bb)
new_map31(wy271, Succ(wy2720), Succ(wy2730), wy274, ba) → new_map31(wy271, wy2720, wy2730, wy274, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map31(wy271, Succ(wy2720), Succ(wy2730), wy274, ba) → new_map31(wy271, wy2720, wy2730, wy274, ba)
The remaining pairs can at least be oriented weakly.

new_map31(wy271, Succ(wy2720), Zero, wy274, ba) → new_map32(wy271, wy274, wy2720, ba)
new_map32(wy187, wy1890, wy190, bb) → new_map31(wy187, Succ(wy190), Succ(wy1890), wy1890, bb)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_map31(x1, x2, x3, x4, x5)) = x2   
POL(new_map32(x1, x2, x3, x4)) = 1 + x3   

The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map31(wy271, Succ(wy2720), Zero, wy274, ba) → new_map32(wy271, wy274, wy2720, ba)
new_map32(wy187, wy1890, wy190, bb) → new_map31(wy187, Succ(wy190), Succ(wy1890), wy1890, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map33(wy187, Succ(wy1880), Succ(wy1890), wy190, ba) → new_map33(wy187, wy1880, wy1890, wy190, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map34(Succ(wy2670), Zero, wy269, ba) → new_map35(wy269, wy2670, ba)
new_map34(Zero, Zero, wy269, ba) → new_map34(Zero, Succ(wy269), wy269, ba)
new_map35(wy1930, wy194, bb) → new_map34(Succ(wy194), Succ(wy1930), wy1930, bb)
new_map34(Succ(wy2670), Succ(wy2680), wy269, ba) → new_map34(wy2670, wy2680, wy269, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
QDP
                        ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map34(Succ(wy2670), Zero, wy269, ba) → new_map35(wy269, wy2670, ba)
new_map35(wy1930, wy194, bb) → new_map34(Succ(wy194), Succ(wy1930), wy1930, bb)
new_map34(Succ(wy2670), Succ(wy2680), wy269, ba) → new_map34(wy2670, wy2680, wy269, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map34(Succ(wy2670), Succ(wy2680), wy269, ba) → new_map34(wy2670, wy2680, wy269, ba)
The remaining pairs can at least be oriented weakly.

new_map34(Succ(wy2670), Zero, wy269, ba) → new_map35(wy269, wy2670, ba)
new_map35(wy1930, wy194, bb) → new_map34(Succ(wy194), Succ(wy1930), wy1930, bb)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_map34(x1, x2, x3, x4)) = x1   
POL(new_map35(x1, x2, x3)) = 1 + x2   

The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map34(Succ(wy2670), Zero, wy269, ba) → new_map35(wy269, wy2670, ba)
new_map35(wy1930, wy194, bb) → new_map34(Succ(wy194), Succ(wy1930), wy1930, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map36(Succ(wy1920), Succ(wy1930), wy194, ba) → new_map36(wy1920, wy1930, wy194, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map37(wy134, wy135, wy136, Succ(wy1370), Succ(wy1380), ba) → new_map37(wy134, wy135, wy136, wy1370, wy1380, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map40(wy246, wy247, wy248, ba) → new_map39(wy246, new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), ba)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)
new_map38(wy246, wy247, wy248, Zero, Succ(wy2500), ba) → new_map39(wy246, new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map40(wy246, wy247, wy248, ba) → new_map39(wy246, new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), ba)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)
new_map38(wy246, wy247, wy248, Zero, Succ(wy2500), ba) → new_map39(wy246, new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map40(wy246, wy247, wy248, ba) → new_map39(wy246, new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), ba) at position [3] we obtained the following new rules:

new_map40(y0, y1, Zero, y3) → new_map39(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)
new_map38(wy246, wy247, wy248, Zero, Succ(wy2500), ba) → new_map39(wy246, new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map40(y0, y1, Zero, y3) → new_map39(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y3) at position [1] we obtained the following new rules:

new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y3)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map38(wy246, wy247, wy248, Zero, Succ(wy2500), ba) → new_map39(wy246, new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3) at position [1] we obtained the following new rules:

new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y3)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)
new_map38(wy246, wy247, wy248, Zero, Succ(wy2500), ba) → new_map39(wy246, new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y3) at position [2] we obtained the following new rules:

new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3)
new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)
new_map38(wy246, wy247, wy248, Zero, Succ(wy2500), ba) → new_map39(wy246, new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y3) at position [2] we obtained the following new rules:

new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)
new_map38(wy246, wy247, wy248, Zero, Succ(wy2500), ba) → new_map39(wy246, new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map38(wy246, wy247, wy248, Zero, Succ(wy2500), ba) → new_map39(wy246, new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), new_primPlusNat0(Zero, wy248), ba) at position [3] we obtained the following new rules:

new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)
new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)
new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y4)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, new_primPlusNat0(Zero, Succ(x0)), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4) at position [1] we obtained the following new rules:

new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)
new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, new_primPlusNat0(Zero, Zero), new_primPlusNat0(Zero, Zero), Zero, y4) at position [1] we obtained the following new rules:

new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
QDP
                                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y4)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), new_primPlusNat0(Zero, Succ(x0)), Succ(x0), y4) at position [2] we obtained the following new rules:

new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y4)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
QDP
                                                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y4)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, new_primPlusNat0(Zero, Zero), Zero, y4) at position [2] we obtained the following new rules:

new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, Zero, Zero, y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
QDP
                                                                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, Zero, Zero, y4)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
QDP
                                                                        ↳ QReductionProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, Zero, Zero, y4)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)

R is empty.
The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
QDP
                                                                            ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, Zero, Zero, y4)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map39(wy107, wy180, wy181, Zero, bb) → new_map38(wy107, wy180, wy181, Zero, Succ(wy107), bb) we obtained the following new rules:

new_map39(z0, Zero, Zero, Zero, z3) → new_map38(z0, Zero, Zero, Zero, Succ(z0), z3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
                                                                          ↳ QDP
                                                                            ↳ Instantiation
QDP
                                                                                ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map39(z0, Zero, Zero, Zero, z3) → new_map38(z0, Zero, Zero, Zero, Succ(z0), z3)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, Zero, Zero, y4)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map40(y0, y1, Zero, y3) → new_map39(y0, Zero, Zero, Zero, y3)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
                                                                          ↳ QDP
                                                                            ↳ Instantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ AND
QDP
                                                                                      ↳ Instantiation
                                                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map39(z0, Zero, Zero, Zero, z3) → new_map38(z0, Zero, Zero, Zero, Succ(z0), z3)
new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, Zero, Zero, y4)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map38(y0, y1, Zero, Zero, Succ(y3), y4) → new_map39(y0, Zero, Zero, Zero, y4) we obtained the following new rules:

new_map38(z0, Zero, Zero, Zero, Succ(z0), z1) → new_map39(z0, Zero, Zero, Zero, z1)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
                                                                          ↳ QDP
                                                                            ↳ Instantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ AND
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
QDP
                                                                                          ↳ NonTerminationProof
                                                                                    ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map39(z0, Zero, Zero, Zero, z3) → new_map38(z0, Zero, Zero, Zero, Succ(z0), z3)
new_map38(z0, Zero, Zero, Zero, Succ(z0), z1) → new_map39(z0, Zero, Zero, Zero, z1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

new_map39(z0, Zero, Zero, Zero, z3) → new_map38(z0, Zero, Zero, Zero, Succ(z0), z3)
new_map38(z0, Zero, Zero, Zero, Succ(z0), z1) → new_map39(z0, Zero, Zero, Zero, z1)

The TRS R consists of the following rules:none


s = new_map38(z0', Zero, Zero, Zero, Succ(z0'), z1) evaluates to t =new_map38(z0', Zero, Zero, Zero, Succ(z0'), z1)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

new_map38(z0', Zero, Zero, Zero, Succ(z0'), z1)new_map39(z0', Zero, Zero, Zero, z1)
with rule new_map38(z0'', Zero, Zero, Zero, Succ(z0''), z1') → new_map39(z0'', Zero, Zero, Zero, z1') at position [] and matcher [z1' / z1, z0'' / z0']

new_map39(z0', Zero, Zero, Zero, z1)new_map38(z0', Zero, Zero, Zero, Succ(z0'), z1)
with rule new_map39(z0, Zero, Zero, Zero, z3) → new_map38(z0, Zero, Zero, Zero, Succ(z0), z3)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
                                                                          ↳ QDP
                                                                            ↳ Instantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ AND
                                                                                    ↳ QDP
QDP
                                                                                      ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map39(wy107, wy180, wy181, Succ(wy1820), bb) → new_map38(wy107, wy180, wy181, Succ(wy1820), Succ(wy107), bb) we obtained the following new rules:

new_map39(z0, Succ(z2), Succ(z2), Succ(z2), z3) → new_map38(z0, Succ(z2), Succ(z2), Succ(z2), Succ(z0), z3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
                                                                          ↳ QDP
                                                                            ↳ Instantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ AND
                                                                                    ↳ QDP
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
QDP
                                                                                          ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map39(z0, Succ(z2), Succ(z2), Succ(z2), z3) → new_map38(z0, Succ(z2), Succ(z2), Succ(z2), Succ(z0), z3)
new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map38(wy246, wy247, wy248, Zero, Zero, ba) → new_map40(wy246, wy247, wy248, ba) we obtained the following new rules:

new_map38(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map40(x0, x1, Succ(y_2), x3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
                                                                          ↳ QDP
                                                                            ↳ Instantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ AND
                                                                                    ↳ QDP
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ ForwardInstantiation
QDP
                                                                                              ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba)
new_map38(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map40(x0, x1, Succ(y_2), x3)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map39(z0, Succ(z2), Succ(z2), Succ(z2), z3) → new_map38(z0, Succ(z2), Succ(z2), Succ(z2), Succ(z0), z3)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map38(wy246, wy247, wy248, Succ(wy2490), Succ(wy2500), ba) → new_map38(wy246, wy247, wy248, wy2490, wy2500, ba) we obtained the following new rules:

new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map38(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Succ(y_3)), x5) → new_map38(x0, x1, Succ(y_2), Zero, Succ(y_3), x5)
new_map38(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map38(x0, x1, x2, Succ(y_3), Succ(y_4), x5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
                                                                          ↳ QDP
                                                                            ↳ Instantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ AND
                                                                                    ↳ QDP
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ ForwardInstantiation
                                                                                            ↳ QDP
                                                                                              ↳ ForwardInstantiation
QDP
                                                                                                  ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map40(x0, x1, Succ(y_2), x3)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map38(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Succ(y_3)), x5) → new_map38(x0, x1, Succ(y_2), Zero, Succ(y_3), x5)
new_map38(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map38(x0, x1, x2, Succ(y_3), Succ(y_4), x5)
new_map39(z0, Succ(z2), Succ(z2), Succ(z2), z3) → new_map38(z0, Succ(z2), Succ(z2), Succ(z2), Succ(z0), z3)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map39(z0, Succ(z2), Succ(z2), Succ(z2), z3) → new_map38(z0, Succ(z2), Succ(z2), Succ(z2), Succ(z0), z3) we obtained the following new rules:

new_map39(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map38(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), Succ(Succ(y_3)), x2)
new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map38(Zero, Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map39(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map38(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_4)), x2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
                                                                          ↳ QDP
                                                                            ↳ Instantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ AND
                                                                                    ↳ QDP
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ ForwardInstantiation
                                                                                            ↳ QDP
                                                                                              ↳ ForwardInstantiation
                                                                                                ↳ QDP
                                                                                                  ↳ ForwardInstantiation
QDP
                                                                                                      ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map38(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map40(x0, x1, Succ(y_2), x3)
new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map38(Zero, Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map39(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map38(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), Succ(Succ(y_3)), x2)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3)
new_map39(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map38(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_4)), x2)
new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map38(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Succ(y_3)), x5) → new_map38(x0, x1, Succ(y_2), Zero, Succ(y_3), x5)
new_map38(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map38(x0, x1, x2, Succ(y_3), Succ(y_4), x5)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map40(y0, y1, Succ(x0), y3) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y3) we obtained the following new rules:

new_map40(Zero, x1, Succ(Zero), x3) → new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map40(Succ(y_0), x1, Succ(Zero), x3) → new_map39(Succ(y_0), Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map40(Succ(y_0), x1, Succ(Succ(y_1)), x3) → new_map39(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
                                                                          ↳ QDP
                                                                            ↳ Instantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ AND
                                                                                    ↳ QDP
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ ForwardInstantiation
                                                                                            ↳ QDP
                                                                                              ↳ ForwardInstantiation
                                                                                                ↳ QDP
                                                                                                  ↳ ForwardInstantiation
                                                                                                    ↳ QDP
                                                                                                      ↳ ForwardInstantiation
QDP
                                                                                                          ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map40(Zero, x1, Succ(Zero), x3) → new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map40(Succ(y_0), x1, Succ(Zero), x3) → new_map39(Succ(y_0), Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map38(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map40(x0, x1, Succ(y_2), x3)
new_map39(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map38(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), Succ(Succ(y_3)), x2)
new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map38(Zero, Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4)
new_map40(Succ(y_0), x1, Succ(Succ(y_1)), x3) → new_map39(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map38(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map39(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map38(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_4)), x2)
new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Succ(y_3)), x5) → new_map38(x0, x1, Succ(y_2), Zero, Succ(y_3), x5)
new_map38(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map38(x0, x1, x2, Succ(y_3), Succ(y_4), x5)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map38(y0, y1, Succ(x0), Zero, Succ(y3), y4) → new_map39(y0, Succ(x0), Succ(x0), Succ(x0), y4) we obtained the following new rules:

new_map38(Zero, x1, Succ(Zero), Zero, Succ(x3), x4) → new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x4)
new_map38(Succ(y_0), x1, Succ(Zero), Zero, Succ(x3), x4) → new_map39(Succ(y_0), Succ(Zero), Succ(Zero), Succ(Zero), x4)
new_map38(Succ(y_0), x1, Succ(Succ(y_1)), Zero, Succ(x3), x4) → new_map39(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
                                                                          ↳ QDP
                                                                            ↳ Instantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ AND
                                                                                    ↳ QDP
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ ForwardInstantiation
                                                                                            ↳ QDP
                                                                                              ↳ ForwardInstantiation
                                                                                                ↳ QDP
                                                                                                  ↳ ForwardInstantiation
                                                                                                    ↳ QDP
                                                                                                      ↳ ForwardInstantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ ForwardInstantiation
QDP
                                                                                                              ↳ NonTerminationProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map40(Succ(y_0), x1, Succ(Zero), x3) → new_map39(Succ(y_0), Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map38(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map40(x0, x1, Succ(y_2), x3)
new_map39(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map38(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), Succ(Succ(y_3)), x2)
new_map40(Succ(y_0), x1, Succ(Succ(y_1)), x3) → new_map39(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map38(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map39(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map38(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_4)), x2)
new_map38(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map38(x0, x1, x2, Succ(y_3), Succ(y_4), x5)
new_map40(Zero, x1, Succ(Zero), x3) → new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map38(Zero, Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map38(Zero, x1, Succ(Zero), Zero, Succ(x3), x4) → new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x4)
new_map38(Succ(y_0), x1, Succ(Zero), Zero, Succ(x3), x4) → new_map39(Succ(y_0), Succ(Zero), Succ(Zero), Succ(Zero), x4)
new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Succ(y_3)), x5) → new_map38(x0, x1, Succ(y_2), Zero, Succ(y_3), x5)
new_map38(Succ(y_0), x1, Succ(Succ(y_1)), Zero, Succ(x3), x4) → new_map39(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

new_map40(Succ(y_0), x1, Succ(Zero), x3) → new_map39(Succ(y_0), Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map38(x0, x1, Succ(y_2), Zero, Zero, x3) → new_map40(x0, x1, Succ(y_2), x3)
new_map39(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map38(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), Succ(Succ(y_3)), x2)
new_map40(Succ(y_0), x1, Succ(Succ(y_1)), x3) → new_map39(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Zero), x5) → new_map38(x0, x1, Succ(y_2), Zero, Zero, x5)
new_map39(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), x2) → new_map38(Succ(y_4), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_3)), Succ(Succ(y_4)), x2)
new_map38(x0, x1, x2, Succ(Succ(y_3)), Succ(Succ(y_4)), x5) → new_map38(x0, x1, x2, Succ(y_3), Succ(y_4), x5)
new_map40(Zero, x1, Succ(Zero), x3) → new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x3)
new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map38(Zero, Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map38(Zero, x1, Succ(Zero), Zero, Succ(x3), x4) → new_map39(Zero, Succ(Zero), Succ(Zero), Succ(Zero), x4)
new_map38(Succ(y_0), x1, Succ(Zero), Zero, Succ(x3), x4) → new_map39(Succ(y_0), Succ(Zero), Succ(Zero), Succ(Zero), x4)
new_map38(x0, x1, Succ(y_2), Succ(Zero), Succ(Succ(y_3)), x5) → new_map38(x0, x1, Succ(y_2), Zero, Succ(y_3), x5)
new_map38(Succ(y_0), x1, Succ(Succ(y_1)), Zero, Succ(x3), x4) → new_map39(Succ(y_0), Succ(Succ(y_1)), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)

The TRS R consists of the following rules:none


s = new_map38(Succ(y_0), x1', Succ(Zero), Succ(Zero), Succ(Succ(y_3)), x5) evaluates to t =new_map38(Succ(y_0), Succ(Zero), Succ(Zero), Succ(Zero), Succ(Succ(y_0)), x5)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

new_map38(Succ(y_0), x1', Succ(Zero), Succ(Zero), Succ(Succ(y_3)), x5)new_map38(Succ(y_0), x1', Succ(Zero), Zero, Succ(y_3), x5)
with rule new_map38(x0, x1'', Succ(y_2), Succ(Zero), Succ(Succ(y_3')), x5') → new_map38(x0, x1'', Succ(y_2), Zero, Succ(y_3'), x5') at position [] and matcher [y_2 / Zero, x1'' / x1', y_3' / y_3, x0 / Succ(y_0), x5' / x5]

new_map38(Succ(y_0), x1', Succ(Zero), Zero, Succ(y_3), x5)new_map39(Succ(y_0), Succ(Zero), Succ(Zero), Succ(Zero), x5)
with rule new_map38(Succ(y_0'), x1, Succ(Zero), Zero, Succ(x3), x4) → new_map39(Succ(y_0'), Succ(Zero), Succ(Zero), Succ(Zero), x4) at position [] and matcher [x1 / x1', x4 / x5, y_0' / y_0, x3 / y_3]

new_map39(Succ(y_0), Succ(Zero), Succ(Zero), Succ(Zero), x5)new_map38(Succ(y_0), Succ(Zero), Succ(Zero), Succ(Zero), Succ(Succ(y_0)), x5)
with rule new_map39(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), x2) → new_map38(Succ(y_3), Succ(Zero), Succ(Zero), Succ(Zero), Succ(Succ(y_3)), x2)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map43(wy252, wy253, wy254, wy255, ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map41(wy252, wy253, wy254, wy255, Zero, Succ(wy2570), ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba)
new_map42(wy107, wy177, wy1090, wy178, Zero, bb) → new_map41(wy107, wy177, wy1090, wy178, Zero, Succ(wy107), bb)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map42(wy107, wy177, wy1090, wy178, Zero, bb) → new_map41(wy107, wy177, wy1090, wy178, Zero, Succ(wy107), bb)
The remaining pairs can at least be oriented weakly.

new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map43(wy252, wy253, wy254, wy255, ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map41(wy252, wy253, wy254, wy255, Zero, Succ(wy2570), ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 0   
POL(Zero) = 1   
POL(new_map41(x1, x2, x3, x4, x5, x6, x7)) = 1   
POL(new_map42(x1, x2, x3, x4, x5, x6)) = 1 + x5   
POL(new_map43(x1, x2, x3, x4, x5)) = 1   
POL(new_primPlusNat0(x1, x2)) = 0   

The following usable rules [17] were oriented:

new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map43(wy252, wy253, wy254, wy255, ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba)
new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map41(wy252, wy253, wy254, wy255, Zero, Succ(wy2570), ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map43(wy252, wy253, wy254, wy255, ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba) at position [4] we obtained the following new rules:

new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)
new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map41(wy252, wy253, wy254, wy255, Zero, Succ(wy2570), ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4) at position [1] we obtained the following new rules:

new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map41(wy252, wy253, wy254, wy255, Zero, Succ(wy2570), ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4) at position [1] we obtained the following new rules:

new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map41(wy252, wy253, wy254, wy255, Zero, Succ(wy2570), ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y4) at position [3] we obtained the following new rules:

new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map41(wy252, wy253, wy254, wy255, Zero, Succ(wy2570), ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y4) at position [3] we obtained the following new rules:

new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Narrowing
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map41(wy252, wy253, wy254, wy255, Zero, Succ(wy2570), ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_map41(wy252, wy253, wy254, wy255, Zero, Succ(wy2570), ba) → new_map42(wy252, new_primPlusNat0(Succ(wy254), wy255), wy254, new_primPlusNat0(Succ(wy254), wy255), new_primPlusNat0(Succ(wy254), wy255), ba) at position [4] we obtained the following new rules:

new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)
new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, new_primPlusNat0(Succ(x0), Succ(x1)), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5) at position [1] we obtained the following new rules:

new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)
new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, new_primPlusNat0(Succ(x0), Zero), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5) at position [1] we obtained the following new rules:

new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
QDP
                                                        ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, new_primPlusNat0(Succ(x0), Succ(x1)), Succ(Succ(new_primPlusNat0(x0, x1))), y5) at position [3] we obtained the following new rules:

new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ Rewriting
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, new_primPlusNat0(Succ(x0), Zero), Succ(x0), y5) at position [3] we obtained the following new rules:

new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
QDP
                                                                ↳ Instantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map42(wy107, wy177, wy1090, wy178, Succ(wy1790), bb) → new_map41(wy107, wy177, wy1090, wy178, Succ(wy1790), Succ(wy107), bb) we obtained the following new rules:

new_map42(z0, Succ(z2), z2, Succ(z2), Succ(z2), z3) → new_map41(z0, Succ(z2), z2, Succ(z2), Succ(z2), Succ(z0), z3)
new_map42(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map41(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
QDP
                                                                    ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba)
new_map42(z0, Succ(z2), z2, Succ(z2), Succ(z2), z3) → new_map41(z0, Succ(z2), z2, Succ(z2), Succ(z2), Succ(z0), z3)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map42(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map41(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z4)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)
new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map41(wy252, wy253, wy254, wy255, Zero, Zero, ba) → new_map43(wy252, wy253, wy254, wy255, ba) we obtained the following new rules:

new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(x0, x1, x2, Zero, Zero, Zero, x4) → new_map43(x0, x1, x2, Zero, x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
QDP
                                                                        ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(x0, x1, x2, Zero, Zero, Zero, x4) → new_map43(x0, x1, x2, Zero, x4)
new_map42(z0, Succ(z2), z2, Succ(z2), Succ(z2), z3) → new_map41(z0, Succ(z2), z2, Succ(z2), Succ(z2), Succ(z0), z3)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)
new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba)
new_map42(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map41(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map41(wy252, wy253, wy254, wy255, Succ(wy2560), Succ(wy2570), ba) → new_map41(wy252, wy253, wy254, wy255, wy2560, wy2570, ba) we obtained the following new rules:

new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Zero, Zero, Zero, x6)
new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Succ(y_3)), x6) → new_map41(x0, x1, x2, Zero, Zero, Succ(y_3), x6)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
QDP
                                                                            ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map42(z0, Succ(z2), z2, Succ(z2), Succ(z2), z3) → new_map41(z0, Succ(z2), z2, Succ(z2), Succ(z2), Succ(z0), z3)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map41(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z4)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Succ(y_3)), x6) → new_map41(x0, x1, x2, Zero, Zero, Succ(y_3), x6)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Zero, Zero, Zero, x6)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(x0, x1, x2, Zero, Zero, Zero, x4) → new_map43(x0, x1, x2, Zero, x4)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map42(z0, Succ(z2), z2, Succ(z2), Succ(z2), z3) → new_map41(z0, Succ(z2), z2, Succ(z2), Succ(z2), Succ(z0), z3) we obtained the following new rules:

new_map42(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Succ(y_4)), x2)
new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map42(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map41(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
QDP
                                                                                ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map41(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map42(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Succ(y_4)), x2)
new_map42(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map41(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z4)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Succ(y_3)), x6) → new_map41(x0, x1, x2, Zero, Zero, Succ(y_3), x6)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Zero, Zero, Zero, x6)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(x0, x1, x2, Zero, Zero, Zero, x4) → new_map43(x0, x1, x2, Zero, x4)
new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4)
new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map43(y0, y1, x0, Zero, y4) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y4) we obtained the following new rules:

new_map43(Succ(y_0), x1, Zero, Zero, x3) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map43(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map43(x0, x1, Succ(y_1), Zero, x3) → new_map42(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map43(Zero, x1, Zero, Zero, x3) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
QDP
                                                                                    ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Succ(y_4)), x2)
new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map42(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map41(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map42(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map41(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z4)
new_map43(x0, x1, Succ(y_1), Zero, x3) → new_map42(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Succ(y_3)), x6) → new_map41(x0, x1, x2, Zero, Zero, Succ(y_3), x6)
new_map43(Zero, x1, Zero, Zero, x3) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)
new_map43(Succ(y_0), x1, Zero, Zero, x3) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Zero, Zero, Zero, x6)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(x0, x1, x2, Zero, Zero, Zero, x4) → new_map43(x0, x1, x2, Zero, x4)
new_map43(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map41(y0, y1, x0, Zero, Zero, Succ(y4), y5) → new_map42(y0, Succ(x0), x0, Succ(x0), Succ(x0), y5) we obtained the following new rules:

new_map41(Succ(y_0), x1, Succ(y_1), Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map41(Zero, x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map41(Succ(y_0), x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map41(x0, x1, Succ(y_1), Zero, Zero, Succ(x3), x4) → new_map42(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
QDP
                                                                                        ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(Succ(y_0), x1, Succ(y_1), Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(Zero, x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map41(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map42(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Succ(y_4)), x2)
new_map42(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map41(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z4)
new_map41(Succ(y_0), x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map43(x0, x1, Succ(y_1), Zero, x3) → new_map42(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Succ(y_3)), x6) → new_map41(x0, x1, x2, Zero, Zero, Succ(y_3), x6)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)
new_map43(Zero, x1, Zero, Zero, x3) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Zero, Zero, Zero, x6)
new_map43(Succ(y_0), x1, Zero, Zero, x3) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(x0, x1, x2, Zero, Zero, Zero, x4) → new_map43(x0, x1, x2, Zero, x4)
new_map43(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map41(x0, x1, Succ(y_1), Zero, Zero, Succ(x3), x4) → new_map42(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map42(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), z4) → new_map41(z0, Succ(Succ(y_0)), z2, Succ(Succ(y_1)), Succ(Succ(y_2)), Succ(z0), z4) we obtained the following new rules:

new_map42(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map41(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
QDP
                                                                                            ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map41(Succ(y_0), x1, Succ(y_1), Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map41(Zero, x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Succ(y_4)), x2)
new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map42(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map41(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map43(x0, x1, Succ(y_1), Zero, x3) → new_map42(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map41(Succ(y_0), x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Succ(y_3)), x6) → new_map41(x0, x1, x2, Zero, Zero, Succ(y_3), x6)
new_map43(Zero, x1, Zero, Zero, x3) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)
new_map43(Succ(y_0), x1, Zero, Zero, x3) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Zero, Zero, Zero, x6)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(x0, x1, x2, Zero, Zero, Zero, x4) → new_map43(x0, x1, x2, Zero, x4)
new_map43(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map41(x0, x1, Succ(y_1), Zero, Zero, Succ(x3), x4) → new_map42(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map42(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map41(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map43(x0, x1, Succ(y_1), Zero, x3) → new_map42(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3) we obtained the following new rules:

new_map43(Succ(y_0), x1, Succ(x2), Zero, x3) → new_map42(Succ(y_0), Succ(Succ(x2)), Succ(x2), Succ(Succ(x2)), Succ(Succ(x2)), x3)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
QDP
                                                                                                ↳ ForwardInstantiation
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(Succ(y_0), x1, Succ(y_1), Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(Zero, x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map41(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map42(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Succ(y_4)), x2)
new_map41(Succ(y_0), x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Succ(y_3)), x6) → new_map41(x0, x1, x2, Zero, Zero, Succ(y_3), x6)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)
new_map43(Zero, x1, Zero, Zero, x3) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Zero, Zero, Zero, x6)
new_map43(Succ(y_0), x1, Zero, Zero, x3) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(x0, x1, x2, Zero, Zero, Zero, x4) → new_map43(x0, x1, x2, Zero, x4)
new_map43(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map41(x0, x1, Succ(y_1), Zero, Zero, Succ(x3), x4) → new_map42(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map42(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map41(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map41(x0, x1, Succ(y_1), Zero, Zero, Succ(x3), x4) → new_map42(x0, Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4) we obtained the following new rules:

new_map41(Succ(y_0), x1, Succ(x2), Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Succ(x2)), Succ(x2), Succ(Succ(x2)), Succ(Succ(x2)), x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
QDP
                                                                                                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map41(Succ(y_0), x1, Succ(y_1), Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map41(Zero, x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Succ(y_4)), x2)
new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map42(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map41(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map41(Succ(y_0), x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Succ(y_3)), x6) → new_map41(x0, x1, x2, Zero, Zero, Succ(y_3), x6)
new_map43(Zero, x1, Zero, Zero, x3) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)
new_map43(Succ(y_0), x1, Zero, Zero, x3) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Zero, Zero, Zero, x6)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(x0, x1, x2, Zero, Zero, Zero, x4) → new_map43(x0, x1, x2, Zero, x4)
new_map43(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map42(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map41(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_map41(Succ(y_0), x1, Succ(y_1), Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x4)
new_map41(Zero, x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map41(Succ(y_0), x1, Zero, Zero, Zero, Succ(x3), x4) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x4)
new_map41(x0, x1, x2, Zero, Zero, Zero, x4) → new_map43(x0, x1, x2, Zero, x4)
The remaining pairs can at least be oriented weakly.

new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Succ(y_4)), x2)
new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map42(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map41(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Succ(y_3)), x6) → new_map41(x0, x1, x2, Zero, Zero, Succ(y_3), x6)
new_map43(Zero, x1, Zero, Zero, x3) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)
new_map43(Succ(y_0), x1, Zero, Zero, x3) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Zero, Zero, Zero, x6)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map43(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map42(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map41(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 0   
POL(Zero) = 1   
POL(new_map41(x1, x2, x3, x4, x5, x6, x7)) = x4   
POL(new_map42(x1, x2, x3, x4, x5, x6)) = 0   
POL(new_map43(x1, x2, x3, x4, x5)) = 0   
POL(new_primPlusNat0(x1, x2)) = 0   

The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
QDP
                                                                                                        ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Succ(y_4), Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Succ(y_4)), x2)
new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x2) → new_map41(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), Succ(Zero), x2)
new_map42(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map41(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Succ(y_3)), x6) → new_map41(x0, x1, x2, Zero, Zero, Succ(y_3), x6)
new_map43(Zero, x1, Zero, Zero, x3) → new_map42(Zero, Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)
new_map43(Succ(y_0), x1, Zero, Zero, x3) → new_map42(Succ(y_0), Succ(Zero), Zero, Succ(Zero), Succ(Zero), x3)
new_map41(x0, x1, x2, Zero, Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Zero, Zero, Zero, x6)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map43(Succ(y_0), x1, Succ(y_1), Zero, x3) → new_map42(Succ(y_0), Succ(Succ(y_1)), Succ(y_1), Succ(Succ(y_1)), Succ(Succ(y_1)), x3)
new_map42(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map41(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 7 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
QDP
                                                                                                            ↳ MNOCProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map41(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map42(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map41(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

The set Q consists of the following terms:

new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ ForwardInstantiation
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ ForwardInstantiation
                                                                                          ↳ QDP
                                                                                            ↳ ForwardInstantiation
                                                                                              ↳ QDP
                                                                                                ↳ ForwardInstantiation
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ MNOCProof
QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map41(x0, x1, x2, x3, Succ(Succ(y_4)), Succ(Succ(y_5)), x6) → new_map41(x0, x1, x2, x3, Succ(y_4), Succ(y_5), x6)
new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x4) → new_map43(x0, x1, x2, Succ(y_3), x4)
new_map41(y0, y1, x0, Succ(x1), Zero, Succ(y4), y5) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y5)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Zero), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Zero, x6)
new_map43(y0, y1, x0, Succ(x1), y4) → new_map42(y0, Succ(Succ(new_primPlusNat0(x0, x1))), x0, Succ(Succ(new_primPlusNat0(x0, x1))), Succ(Succ(new_primPlusNat0(x0, x1))), y4)
new_map42(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), x2) → new_map41(Succ(y_5), Succ(Succ(y_4)), Succ(y_4), Succ(Succ(y_4)), Succ(Succ(y_4)), Succ(Succ(y_5)), x2)
new_map41(x0, x1, x2, Succ(y_3), Succ(Zero), Succ(Succ(y_4)), x6) → new_map41(x0, x1, x2, Succ(y_3), Zero, Succ(y_4), x6)
new_map42(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), x5) → new_map41(Succ(y_5), Succ(Succ(x1)), x2, Succ(Succ(x3)), Succ(Succ(x4)), Succ(Succ(y_5)), x5)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Succ(wy1050), Zero) → Succ(wy1050)
new_primPlusNat0(Zero, Succ(wy1040)) → Succ(wy1040)
new_primPlusNat0(Succ(wy1050), Succ(wy1040)) → Succ(Succ(new_primPlusNat0(wy1050, wy1040)))

Q is empty.
We have to consider all (P,Q,R)-chains.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map44(wy237, Succ(wy2380), Succ(wy2390), wy240, ba) → new_map44(wy237, wy2380, wy2390, wy240, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map45(wy107, wy108, wy109, Succ(wy1100), Succ(wy1110), ba) → new_map45(wy107, wy108, wy109, wy1100, wy1110, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map46(wy30, wy31, wy32, Succ(wy330), Succ(wy340), ba, bb) → new_map46(wy30, wy31, wy32, wy330, wy340, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:


Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ AND
QDP
                    ↳ NonTerminationProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_map([]) → new_map([])

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_map([]) → new_map([])

The TRS R consists of the following rules:none


s = new_map([]) evaluates to t =new_map([])

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_map([]) to new_map([]).





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.